BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9425246)

  • 21. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose.
    Vinuselvi P; Lee SK
    Enzyme Microb Technol; 2012 Jan; 50(1):1-4. PubMed ID: 22133432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deoxyribonuclease activity in Selenomonas ruminantium, Streptococcus bovis, and Bacteroides ovatus.
    Al-Khaldi SF; Durocher LL; Martin SA
    Curr Microbiol; 2000 Sep; 41(3):182-6. PubMed ID: 10915204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic turnover in cell wall constituents of Avena sativa L. coleoptile sections.
    Katz M; Ordin L
    Biochim Biophys Acta; 1967 Jun; 141(1):118-25. PubMed ID: 6051572
    [No Abstract]   [Full Text] [Related]  

  • 24. In vitro fermentation of arabinoxylan oligosaccharides and low molecular mass arabinoxylans with different structural properties from wheat (Triticum aestivum L.) bran and psyllium (Plantago ovata Forsk) seed husk.
    Pollet A; Van Craeyveld V; Van de Wiele T; Verstraete W; Delcour JA; Courtin CM
    J Agric Food Chem; 2012 Feb; 60(4):946-54. PubMed ID: 22224418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Succinic acid production by Actinobacillus succinogenes from batch fermentation of mixed sugars.
    Almqvist H; Pateraki C; Alexandri M; Koutinas A; Lidén G
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1117-30. PubMed ID: 27255975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose.
    Liu D; Wang S; Xu B; Guo Y; Zhao J; Liu W; Sun Z; Shao C; Wei X; Jiang Z; Wang X; Liu F; Wang J; Huang L; Hu D; He X; Riedel CU; Yuan J
    Proteomics; 2011 Jul; 11(13):2628-38. PubMed ID: 21630463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolism and growth yields in Bacteroides ruminicola strain b14.
    Howlett MR; Mountfort DO; Turner KW; Roberton AM
    Appl Environ Microbiol; 1976 Aug; 32(2):274-83. PubMed ID: 970946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms by which wheat bran and oat bran increase stool weight in humans.
    Chen HL; Haack VS; Janecky CW; Vollendorf NW; Marlett JA
    Am J Clin Nutr; 1998 Sep; 68(3):711-9. PubMed ID: 9734752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste.
    Nishiyama T; Ueki A; Kaku N; Watanabe K; Ueki K
    Int J Syst Evol Microbiol; 2009 Aug; 59(Pt 8):1901-7. PubMed ID: 19567576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Origins of fermentation products formed during growth of Bacteroides ruminicola on glucose.
    Mountfort DO; Roberton AM
    J Gen Microbiol; 1978 Jun; 106(2):353-60. PubMed ID: 670931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacteroides xylanolyticus sp. nov., a xylanolytic bacterium from methane producing cattle manure.
    Scholten-Koerselman I; Houwaard F; Janssen P; Zehnder AJ
    Antonie Van Leeuwenhoek; 1986; 52(6):543-54. PubMed ID: 3813526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth of Neocallimastix sp. Strain R1 on Italian Ryegrass Hay: Removal of Neutral Sugars from Plant Cell Walls.
    Theodorou MK; Longland AC; Dhanoa MS; Lowe SE; Trinci AP
    Appl Environ Microbiol; 1989 Jun; 55(6):1363-7. PubMed ID: 16347929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fermentation of xylose and hemicellulose hydrolysates by an ethanol-adapted culture of Bacteroides polypragmatus.
    Patel GB; MacKenzie CR; Agnew BJ
    Arch Microbiol; 1986 Oct; 146(1):68-73. PubMed ID: 3813774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into the fermentation patterns of wheat bran cell wall polysaccharides using an in-vitro batch fermentation model.
    Yang Z; Huang T; Guo A; Chen W; Bai W; Wei L; Tian L
    Carbohydr Polym; 2023 Oct; 317():121100. PubMed ID: 37364962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gastrointestinal implications in pigs of wheat and oat fractions. 1. Digestibility and bulking properties of polysaccharides and other major constituents.
    Bach Knudsen KE; Hansen I
    Br J Nutr; 1991 Mar; 65(2):217-32. PubMed ID: 1645992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ninety six well microtiter plate as microbioreactors for production of itaconic acid by six Aspergillus terreus strains.
    Saha BC; Kennedy GJ
    J Microbiol Methods; 2018 Jan; 144():53-59. PubMed ID: 29109012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.
    Ehsanipour M; Suko AV; Bura R
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):807-16. PubMed ID: 26992903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.
    Okamoto K; Kanawaku R; Masumoto M; Yanase H
    Enzyme Microb Technol; 2012 Feb; 50(2):96-100. PubMed ID: 22226194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of fermentation conditions on the flocculation of recombinant Saccharomyces cerevisiae capable of co-fermenting glucose and xylose.
    Matsushika A; Morikawa H; Goshima T; Hoshino T
    Appl Biochem Biotechnol; 2014 Sep; 174(2):623-31. PubMed ID: 25086918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.