These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9425246)

  • 61. Production and in vitro fermentation of soluble, non-digestible, feruloylated oligo- and polysaccharides from maize and wheat brans.
    Yang J; Maldonado-Gómez MX; Hutkins RW; Rose DJ
    J Agric Food Chem; 2014 Jan; 62(1):159-66. PubMed ID: 24359228
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of oat bran, rice bran, wheat fiber, and wheat germ on postprandial lipemia in healthy adults.
    Cara L; Dubois C; Borel P; Armand M; Senft M; Portugal H; Pauli AM; Bernard PM; Lairon D
    Am J Clin Nutr; 1992 Jan; 55(1):81-8. PubMed ID: 1309476
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Adsorption of a hydrophobic mutagen to cereal brans and cereal bran dietary fibres.
    Harris PJ; Sasidharan VK; Roberton AM; Triggs CM; Blakeney AB; Ferguson LR
    Mutat Res; 1998 Feb; 412(3):323-31. PubMed ID: 9600701
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fermentation of L-tartrate by a newly isolated gram-negative glycolytic bacterium.
    Janssen PH
    Antonie Van Leeuwenhoek; 1991 Apr; 59(3):191-8. PubMed ID: 1867475
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The relationship between growth enhancement and pet expression in Escherichia coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1996; 57-58():277-92. PubMed ID: 8669901
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes.
    Miller TL
    Arch Microbiol; 1978 May; 117(2):145-52. PubMed ID: 678020
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Optimization of growth conditions for xylanase production by Aspergillus niger in solid state fermentation.
    Kavya V; Padmavathi T
    Pol J Microbiol; 2009; 58(2):125-30. PubMed ID: 19824396
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fermentation of xylose into acetic acid by Clostridium thermoaceticum.
    Balasubramanian N; Kim JS; Lee YY
    Appl Biochem Biotechnol; 2001; 91-93():367-76. PubMed ID: 11963866
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fermentation of xylo-oligosaccharides obtained from wheat bran and Bengal gram husk by lactic acid bacteria and bifidobacteria.
    Madhukumar MS; Muralikrishna G
    J Food Sci Technol; 2012 Dec; 49(6):745-52. PubMed ID: 24293694
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Proteomic analyses of Bacteroides ovatus and Bifidobacterium longum in xylan bidirectional culture shows sugar cross-feeding interactions.
    Vega-Sagardía M; Delgado J; Ruiz-Moyano S; Garrido D
    Food Res Int; 2023 Aug; 170():113025. PubMed ID: 37316088
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Production of polyhydroxybutyrate from wheat bran hydrolysate using Ralstonia eutropha through microbial fermentation.
    Annamalai N; Sivakumar N
    J Biotechnol; 2016 Nov; 237():13-17. PubMed ID: 27596603
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nucleotide sequences of xylan-inducible xylanase and xylosidase/arabinosidase genes from Bacteroides ovatus V975.
    Whitehead TR
    Biochim Biophys Acta; 1995 May; 1244(1):239-41. PubMed ID: 7766665
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The "dimeriser" hypothesis for sugar permeation through red cell membrane: reinvestigation of original evidence.
    LeFevre PG
    Biochim Biophys Acta; 1966 Jul; 120(3):395-405. PubMed ID: 5966541
    [No Abstract]   [Full Text] [Related]  

  • 75. Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake.
    Verhoeven MD; Bracher JM; Nijland JG; Bouwknegt J; Daran JG; Driessen AJM; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29860442
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evaluation of xylan fermentation for the identification of Bacteroides ovatus and Bacteroides thetaiotaomicron.
    Cooper SW; Pfeiffer DG; Tally FP
    J Clin Microbiol; 1985 Jul; 22(1):125-6. PubMed ID: 4019735
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures.
    Gao Q; Zhang M; McMillan JD; Kompala DS
    Appl Biochem Biotechnol; 2002; 98-100():341-55. PubMed ID: 12018261
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Co-utilization of polymerized carbon sources by Bacteroides ovatus grown in a two-stage continuous culture system.
    MacFarlane GT; Gibson GR
    Appl Environ Microbiol; 1991 Jan; 57(1):1-6. PubMed ID: 2036001
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characteristics of Bacteroides isolates from the cecum of conventional mice.
    Tannock GW
    Appl Environ Microbiol; 1977 Apr; 33(4):745-50. PubMed ID: 869524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.