These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 9425547)
1. The "independent components" of natural scenes are edge filters. Bell AJ; Sejnowski TJ Vision Res; 1997 Dec; 37(23):3327-38. PubMed ID: 9425547 [TBL] [Abstract][Full Text] [Related]
2. Double-gabor filters are independent components of small translation-invariant image patches. Saremi S; Sejnowski TJ; Sharpee TO Neural Comput; 2013 Apr; 25(4):922-39. PubMed ID: 23339617 [TBL] [Abstract][Full Text] [Related]
3. Color-opponent receptive fields derived from independent component analysis of natural images. Tailor DR; Finkel LH; Buchsbaum G Vision Res; 2000; 40(19):2671-6. PubMed ID: 10958917 [TBL] [Abstract][Full Text] [Related]
4. Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. van Hateren JH; Ruderman DL Proc Biol Sci; 1998 Dec; 265(1412):2315-20. PubMed ID: 9881476 [TBL] [Abstract][Full Text] [Related]
5. Is sparse and distributed the coding goal of simple cells? Zhao L Biol Cybern; 2004 Dec; 91(6):408-16. PubMed ID: 15597179 [TBL] [Abstract][Full Text] [Related]
6. A comparison of natural-image-based models of simple-cell coding. Willmore B; Watters PA; Tolhurst DJ Perception; 2000; 29(9):1017-40. PubMed ID: 11144817 [TBL] [Abstract][Full Text] [Related]
7. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Olshausen BA; Field DJ Nature; 1996 Jun; 381(6583):607-9. PubMed ID: 8637596 [TBL] [Abstract][Full Text] [Related]
8. Coding of natural scenes in primary visual cortex. Weliky M; Fiser J; Hunt RH; Wagner DN Neuron; 2003 Feb; 37(4):703-18. PubMed ID: 12597866 [TBL] [Abstract][Full Text] [Related]
9. Are sparse-coding simple cell receptive field models physiologically plausible? Watters PA J Integr Neurosci; 2006 Sep; 5(3):333-53. PubMed ID: 17125157 [TBL] [Abstract][Full Text] [Related]
10. Independent components of color natural scenes resemble V1 neurons in their spatial and color tuning. Caywood MS; Willmore B; Tolhurst DJ J Neurophysiol; 2004 Jun; 91(6):2859-73. PubMed ID: 14749316 [TBL] [Abstract][Full Text] [Related]
11. Spatiochromatic receptive field properties derived from information-theoretic analyses of cone mosaic responses to natural scenes. Doi E; Inui T; Lee TW; Wachtler T; Sejnowski TJ Neural Comput; 2003 Feb; 15(2):397-417. PubMed ID: 12590812 [TBL] [Abstract][Full Text] [Related]
12. A new image representation algorithm inspired by image submodality models, redundancy reduction, and learning in biological vision. Balakrishnan N; Hariharakrishnan K; Schonfeld D IEEE Trans Pattern Anal Mach Intell; 2005 Sep; 27(9):1367-78. PubMed ID: 16173182 [TBL] [Abstract][Full Text] [Related]
13. Representation of higher-order statistical structures in natural scenes via spatial phase distributions. MaBouDi H; Shimazaki H; Amari S; Soltanian-Zadeh H Vision Res; 2016 Mar; 120():61-73. PubMed ID: 26278166 [TBL] [Abstract][Full Text] [Related]
14. An Adaptive Homeostatic Algorithm for the Unsupervised Learning of Visual Features. Perrinet LU Vision (Basel); 2019 Sep; 3(3):. PubMed ID: 31735848 [TBL] [Abstract][Full Text] [Related]
15. Independent component filters of natural images compared with simple cells in primary visual cortex. van Hateren JH; van der Schaaf A Proc Biol Sci; 1998 Mar; 265(1394):359-66. PubMed ID: 9523437 [TBL] [Abstract][Full Text] [Related]
16. Statistical models of natural images and cortical visual representation. Hyvärinen A Top Cogn Sci; 2010 Apr; 2(2):251-64. PubMed ID: 25163788 [TBL] [Abstract][Full Text] [Related]