BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9425634)

  • 1. Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli.
    Thomas JG; Baneyx F
    Protein Expr Purif; 1997 Dec; 11(3):289-96. PubMed ID: 9425634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins.
    Thomas JG; Baneyx F
    J Biol Chem; 1996 May; 271(19):11141-7. PubMed ID: 8626659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems.
    Vasina JA; Baneyx F
    Protein Expr Purif; 1997 Mar; 9(2):211-8. PubMed ID: 9056486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane docking of an aggregation-prone protein improves its solubilization.
    Tagourti J; Malki A; Kern R; d'Alençon E; Richarme G
    Gene; 2008 Dec; 426(1-2):32-8. PubMed ID: 18809475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells.
    Thomas JG; Baneyx F
    Mol Microbiol; 2000 Jun; 36(6):1360-70. PubMed ID: 10931286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli.
    Chen Y; Song J; Sui SF; Wang DN
    Protein Expr Purif; 2003 Dec; 32(2):221-31. PubMed ID: 14965767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein folding in the cytoplasm of Escherichia coli: requirements for the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines.
    Thomas JG; Baneyx F
    Mol Microbiol; 1996 Sep; 21(6):1185-96. PubMed ID: 8898387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA; Kwiatkowska JM; Lipińska B
    Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.
    Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S
    J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperone over-expression in Escherichia coli: apparent increased yields of soluble recombinant protein kinases are due mainly to soluble aggregates.
    Haacke A; Fendrich G; Ramage P; Geiser M
    Protein Expr Purif; 2009 Apr; 64(2):185-93. PubMed ID: 19038347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The N-terminal domain of Escherichia coli ClpB enhances chaperone function.
    Chow IT; Barnett ME; Zolkiewski M; Baneyx F
    FEBS Lett; 2005 Aug; 579(20):4242-8. PubMed ID: 16051221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration.
    Diamant S; Goloubinoff P
    Biochemistry; 1998 Jul; 37(27):9688-94. PubMed ID: 9657681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL.
    González-Montalbán N; Carrió MM; Cuatrecasas S; Arís A; Villaverde A
    J Biotechnol; 2005 Sep; 118(4):406-12. PubMed ID: 16024126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular chaperone function of the Rana catesbeiana small heat shock protein, hsp30.
    Kaldis A; Atkinson BG; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Oct; 139(2):175-82. PubMed ID: 15528166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis rates of cellular proteins involved in translation and protein folding are strongly altered in response to overproduction of basic fibroblast growth factor by recombinant Escherichia coli.
    Rinas U
    Biotechnol Prog; 1996; 12(2):196-200. PubMed ID: 8857188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein isoaspartate methyltransferase is a multicopy suppressor of protein aggregation in Escherichia coli.
    Kern R; Malki A; Abdallah J; Liebart JC; Dubucs C; Yu MH; Richarme G
    J Bacteriol; 2005 Feb; 187(4):1377-83. PubMed ID: 15687202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli.
    de Marco A; Deuerling E; Mogk A; Tomoyasu T; Bukau B
    BMC Biotechnol; 2007 Jun; 7():32. PubMed ID: 17565681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the productivity of recombinant protein in Escherichia coli under thermal stress by coexpressing GroELS chaperone system.
    Kim SY; Ayyadurai N; Heo MA; Park S; Jeong YJ; Lee SG
    J Microbiol Biotechnol; 2009 Jan; 19(1):72-7. PubMed ID: 19190411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of heat-shock response and inclusion body formation during temperature-induced production of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli.
    Hoffmann F; Rinas U
    Biotechnol Prog; 2000; 16(6):1000-7. PubMed ID: 11101327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.