BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9425673)

  • 1. Quantifying the performance limitations of older and younger adults in a target acquisition task.
    Liao MJ; Jagacinski RJ; Greenberg N
    J Exp Psychol Hum Percept Perform; 1997 Dec; 23(6):1644-64. PubMed ID: 9425673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins of submovements in movements of elderly adults.
    Fradet L; Lee G; Dounskaia N
    J Neuroeng Rehabil; 2008 Nov; 5():28. PubMed ID: 19014548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related differences in movement control: adjusting submovement structure to optimize performance.
    Walker N; Philbin DA; Fisk AD
    J Gerontol B Psychol Sci Soc Sci; 1997 Jan; 52B(1):P40-52. PubMed ID: 9008674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related kinematic differences as influenced by task difficulty, target size, and movement amplitude.
    Ketcham CJ; Seidler RD; Van Gemmert AW; Stelmach GE
    J Gerontol B Psychol Sci Soc Sci; 2002 Jan; 57(1):P54-64. PubMed ID: 11773224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movement strategies in vertical aiming of older adults.
    Bennett SJ; Elliott D; Rodacki A
    Exp Brain Res; 2012 Feb; 216(3):445-55. PubMed ID: 22116400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manual interception of moving targets. II. On-line control of overlapping submovements.
    Lee D; Port NL; Georgopoulos AP
    Exp Brain Res; 1997 Oct; 116(3):421-33. PubMed ID: 9372291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of sequential arm movements with and without advance knowledge of motor pathways in Parkinson's disease.
    Currà A; Berardelli A; Agostino R; Modugno N; Puorger CC; Accornero N; Manfredi M
    Mov Disord; 1997 Sep; 12(5):646-54. PubMed ID: 9380044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid aimed limb movements: age differences and practice effects in component submovements.
    Pratt J; Chasteen AL; Abrams RA
    Psychol Aging; 1994 Jun; 9(2):325-34. PubMed ID: 8054180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of different submovement types during pointing to a target.
    Wisleder D; Dounskaia N
    Exp Brain Res; 2007 Jan; 176(1):132-49. PubMed ID: 16826410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Children's age-related speed-accuracy strategies in intercepting moving targets in two dimensions.
    Rothenberg-Cunningham A; Newell KM
    Res Q Exerc Sport; 2013 Mar; 84(1):79-87. PubMed ID: 23611011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling reaching movements with predictable and unpredictable target motion in 10-year-old children and adults.
    Daum MM; Huber S; Krist H
    Exp Brain Res; 2007 Mar; 177(4):483-92. PubMed ID: 17006685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of biomechanical factors on substructure of pointing movements.
    Dounskaia N; Wisleder D; Johnson T
    Exp Brain Res; 2005 Aug; 164(4):505-16. PubMed ID: 15856206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye and hand movement strategies in older adults during a complex reaching task.
    Coats RO; Fath AJ; Astill SL; Wann JP
    Exp Brain Res; 2016 Feb; 234(2):533-47. PubMed ID: 26537959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Submovement control processes in discrete aiming as a function of space-time constraints.
    Hsieh TY; Liu YT; Newell KM
    PLoS One; 2017; 12(12):e0189328. PubMed ID: 29281670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental features of rapid aiming arm movements across the lifespan.
    Yan JH; Thomas JR; Stelmach GE; Thomas KT
    J Mot Behav; 2000 Jun; 32(2):121-40. PubMed ID: 11005944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized slowing in sinusoidal tracking by older adults.
    Jagacinski RJ; Liao MJ; Fayyad EA
    Psychol Aging; 1995 Mar; 10(1):8-19. PubMed ID: 7779320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive interference and aging: insights from a spatial stimulus-response consistency task.
    Juncos-Rabadán O; Pereiro AX; Facal D
    Acta Psychol (Amst); 2008 Feb; 127(2):237-46. PubMed ID: 17601480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistence in visual feedback control by the elderly.
    Seidler-Dobrin RD; Stelmach GE
    Exp Brain Res; 1998 Apr; 119(4):467-74. PubMed ID: 9588781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The aging brain: Movement speed and spatial control.
    Lamb DG; Correa LN; Seider TR; Mosquera DM; Rodriguez JA; Salazar L; Schwartz ZJ; Cohen RA; Falchook AD; Heilman KM
    Brain Cogn; 2016 Nov; 109():105-111. PubMed ID: 27658213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial perspective taking is robust in later life.
    Watanabe M; Takamatsu M
    Int J Aging Hum Dev; 2014; 78(3):277-97. PubMed ID: 25265681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.