BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9426180)

  • 1. Synthesis of polylactides with different molecular weights.
    Hyon SH; Jamshidi K; Ikada Y
    Biomaterials; 1997 Nov; 18(22):1503-8. PubMed ID: 9426180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polylactides-Methods of synthesis and characterization.
    Pretula J; Slomkowski S; Penczek S
    Adv Drug Deliv Rev; 2016 Dec; 107():3-16. PubMed ID: 27174153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ring-opening polymerization of L-lactide and preparation of its microsphere in supercritical fluids.
    Pack JW; Kim SH; Park SY; Lee YW; Kim YH
    Macromol Biosci; 2004 Mar; 4(3):340-5. PubMed ID: 15468225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Syntheses and application of polylactides.
    Kricheldorf HR
    Chemosphere; 2001 Apr; 43(1):49-54. PubMed ID: 11233824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of ABCBA penta stereoblock polylactide copolymers by two-step ring-opening polymerization of L- and D-lactides with poly(3-methyl-1,5-pentylene succinate) as macroinitiator (C): development of flexible stereocomplexed polylactide materials.
    Hirata M; Masutani K; Kimura Y
    Biomacromolecules; 2013 Jul; 14(7):2154-61. PubMed ID: 23724857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Syntheses of biodegradable and biorenewable polylactides initiated by aluminum complexes bearing porphyrin derivatives by the ring-opening polymerization of lactides.
    Li D; Gao B; Duan Q
    J Biomater Sci Polym Ed; 2019 Jul; 30(10):846-860. PubMed ID: 30961446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(hexyl-substituted lactides): novel injectable hydrophobic drug delivery systems.
    Trimaille T; Gurny R; Möller M
    J Biomed Mater Res A; 2007 Jan; 80(1):55-65. PubMed ID: 16958050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization.
    Kaihara S; Matsumura S; Mikos AG; Fisher JP
    Nat Protoc; 2007; 2(11):2767-71. PubMed ID: 18007612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization.
    Dai S; Li Z
    Biomacromolecules; 2008 Jul; 9(7):1883-93. PubMed ID: 18540675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerization of cyclic esters initiated by carnitine and tin (II) octoate.
    Sobczak M; Kolodziejski W
    Molecules; 2009 Feb; 14(2):621-32. PubMed ID: 19214152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymerization of lactide with zinc and magnesium beta-diiminate complexes: stereocontrol and mechanism.
    Chamberlain BM; Cheng M; Moore DR; Ovitt TM; Lobkovsky EB; Coates GW
    J Am Chem Soc; 2001 Apr; 123(14):3229-38. PubMed ID: 11457057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalytic fabrication of fast-degradable, water-soluble polycarbonate functionalized with tertiary amine groups in backbone.
    Wang HF; Su W; Zhang C; Luo XH; Feng J
    Biomacromolecules; 2010 Oct; 11(10):2550-7. PubMed ID: 20836520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ring opening polymerization of L-lactide initiated by creatinine.
    Wang C; Li H; Zhao X
    Biomaterials; 2004 Dec; 25(27):5797-801. PubMed ID: 15172491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt.
    Tsuji H; Tezuka Y
    Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoblock poly(lactic acid): synthesis via solid-state polycondensation of a stereocomplexed mixture of poly(L-lactic acid) and poly(D-lactic acid).
    Fukushima K; Furuhashi Y; Sogo K; Miura S; Kimura Y
    Macromol Biosci; 2005 Jan; 5(1):21-9. PubMed ID: 15633160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Preparation and in-vitro degradation of polylactide and poly(L-lactide-co-glycolide)].
    Wei Z; Liu L; Zhang M; Yang F; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):122-6. PubMed ID: 18435272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic polymerization to polyesters in nonaqueous solvents.
    Zhao H
    Methods Enzymol; 2019; 627():1-21. PubMed ID: 31630737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(α-hydroxy alkanoic acid)s derived from α-amino acids.
    Cohen-Arazi N; Domb AJ; Katzhendler J
    Macromol Biosci; 2013 Dec; 13(12):1689-99. PubMed ID: 24039056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.