BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9426218)

  • 21. Crystal structure of glycyl endopeptidase from Carica papaya: a cysteine endopeptidase of unusual substrate specificity.
    O'Hara BP; Hemmings AM; Buttle DJ; Pearl LH
    Biochemistry; 1995 Oct; 34(40):13190-5. PubMed ID: 7548082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and mapping of Casp7, a cysteine protease resembling CPP32 beta, interleukin-1 beta converting enzyme, and CED-3.
    Juan TS; McNiece IK; Argento JM; Jenkins NA; Gilbert DJ; Copeland NG; Fletcher FA
    Genomics; 1997 Feb; 40(1):86-93. PubMed ID: 9070923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis.
    Nicholson DW; Ali A; Thornberry NA; Vaillancourt JP; Ding CK; Gallant M; Gareau Y; Griffin PR; Labelle M; Lazebnik YA
    Nature; 1995 Jul; 376(6535):37-43. PubMed ID: 7596430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of CPP32/Yama(-like) proteases in Fas-mediated apoptosis.
    Hasegawa J; Kamada S; Kamiike W; Shimizu S; Imazu T; Matsuda H; Tsujimoto Y
    Cancer Res; 1996 Apr; 56(8):1713-8. PubMed ID: 8620480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-based combinatorial library design: discovery of non-peptidic inhibitors of caspases 3 and 8.
    Head MS; Ryan MD; Lee D; Feng Y; Janson CA; Concha NO; Keller PM; deWolf WE
    J Comput Aided Mol Des; 2001 Dec; 15(12):1105-17. PubMed ID: 12160093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteolytic activation of PKN by caspase-3 or related protease during apoptosis.
    Takahashi M; Mukai H; Toshimori M; Miyamoto M; Ono Y
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):11566-71. PubMed ID: 9751706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mch3, a novel human apoptotic cysteine protease highly related to CPP32.
    Fernandes-Alnemri T; Takahashi A; Armstrong R; Krebs J; Fritz L; Tomaselli KJ; Wang L; Yu Z; Croce CM; Salveson G
    Cancer Res; 1995 Dec; 55(24):6045-52. PubMed ID: 8521391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains.
    Fernandes-Alnemri T; Armstrong RC; Krebs J; Srinivasula SM; Wang L; Bullrich F; Fritz LC; Trapani JA; Tomaselli KJ; Litwack G; Alnemri ES
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7464-9. PubMed ID: 8755496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate specificities of caspase family proteases.
    Talanian RV; Quinlan C; Trautz S; Hackett MC; Mankovich JA; Banach D; Ghayur T; Brady KD; Wong WW
    J Biol Chem; 1997 Apr; 272(15):9677-82. PubMed ID: 9092497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural basis of the unusual stability and substrate specificity of ervatamin C, a plant cysteine protease from Ervatamia coronaria.
    Thakurta PG; Biswas S; Chakrabarti C; Sundd M; Jagannadham MV; Dattagupta JK
    Biochemistry; 2004 Feb; 43(6):1532-40. PubMed ID: 14769029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Affinity labeling displays the stepwise activation of ICE-related proteases by Fas, staurosporine, and CrmA-sensitive caspase-8.
    Takahashi A; Hirata H; Yonehara S; Imai Y; Lee KK; Moyer RW; Turner PC; Mesner PW; Okazaki T; Sawai H; Kishi S; Yamamoto K; Okuma M; Sasada M
    Oncogene; 1997 Jun; 14(23):2741-52. PubMed ID: 9190889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8.
    Stennicke HR; Renatus M; Meldal M; Salvesen GS
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):563-8. PubMed ID: 10947972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interleukin-1 beta converting enzyme: a novel cysteine protease required for IL-1 beta production and implicated in programmed cell death.
    Thornberry NA; Molineaux SM
    Protein Sci; 1995 Jan; 4(1):3-12. PubMed ID: 7773174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorometric and colorimetric detection of caspase activity associated with apoptosis.
    Gurtu V; Kain SR; Zhang G
    Anal Biochem; 1997 Aug; 251(1):98-102. PubMed ID: 9300088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of CPP32-like activity in the TNF-treated U937 cells by the proteasome inhibitors.
    Fujita E; Mukasa T; Tsukahara T; Arahata K; Omura S; Momoi T
    Biochem Biophys Res Commun; 1996 Jul; 224(1):74-9. PubMed ID: 8694836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics studies of caspase-3.
    Sulpizi M; Rothlisberger U; Carloni P
    Biophys J; 2003 Apr; 84(4):2207-15. PubMed ID: 12668429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity.
    Wei Y; Fox T; Chambers SP; Sintchak J; Coll JT; Golec JM; Swenson L; Wilson KP; Charifson PS
    Chem Biol; 2000 Jun; 7(6):423-32. PubMed ID: 10873833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis for the regulation of cysteine-protease activity by a new class of protease inhibitors in Plasmodium.
    Hansen G; Heitmann A; Witt T; Li H; Jiang H; Shen X; Heussler VT; Rennenberg A; Hilgenfeld R
    Structure; 2011 Jul; 19(7):919-29. PubMed ID: 21742259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of distant caspase homologues by natural caspase inhibitors.
    Snipas SJ; Stennicke HR; Riedl S; Potempa J; Travis J; Barrett AJ; Salvesen GS
    Biochem J; 2001 Jul; 357(Pt 2):575-80. PubMed ID: 11439111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins.
    Aravind L; Koonin EV
    Proteins; 2002 Mar; 46(4):355-67. PubMed ID: 11835511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.