BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9426305)

  • 1. A role of microtubules during the formation of cell processes in neuronal and non-neuronal cells.
    Kobayashi N; Mundel P
    Cell Tissue Res; 1998 Feb; 291(2):163-74. PubMed ID: 9426305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Regulation of the microtubule-dependent process formation. A review based on a comparison between the neuron and the renal glomerular podocyte].
    Kobayashi N; Mominoki K; Wakisaka H; Matsuda S; Sakai T
    Kaibogaku Zasshi; 1999 Aug; 74(4):429-39. PubMed ID: 10496088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation.
    Yau KW; Schätzle P; Tortosa E; Pagès S; Holtmaat A; Kapitein LC; Hoogenraad CC
    J Neurosci; 2016 Jan; 36(4):1071-85. PubMed ID: 26818498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the process formation; podocytes vs. neurons.
    Kobayashi N
    Microsc Res Tech; 2002 May; 57(4):217-23. PubMed ID: 12012387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity.
    Sánchez-Huertas C; Freixo F; Viais R; Lacasa C; Soriano E; Lüders J
    Nat Commun; 2016 Jul; 7():12187. PubMed ID: 27405868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonuniform microtubular polarity established by CHO1/MKLP1 motor protein is necessary for process formation of podocytes.
    Kobayashi N; Reiser J; Kriz W; Kuriyama R; Mundel P
    J Cell Biol; 1998 Dec; 143(7):1961-70. PubMed ID: 9864367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of motor proteins in establishing the microtubule arrays of axons and dendrites.
    Baas PW
    J Chem Neuroanat; 1998 Jun; 14(3-4):175-80. PubMed ID: 9704896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rearrangement of microtubule polarity orientation during conversion of dendrites to axons in cultured pyramidal neurons.
    Takahashi D; Yu W; Baas PW; Kawai-Hirai R; Hayashi K
    Cell Motil Cytoskeleton; 2007 May; 64(5):347-59. PubMed ID: 17342761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for studying microtubule transport in the neuron.
    Baas PW
    Microsc Res Tech; 2000 Jan; 48(2):75-84. PubMed ID: 10649508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubulin synthesis and assembly in differentiating neurons.
    Laferrière NB; MacRae TH; Brown DL
    Biochem Cell Biol; 1997; 75(2):103-17. PubMed ID: 9250358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function.
    Sánchez C; Díaz-Nido J; Avila J
    Prog Neurobiol; 2000 Jun; 61(2):133-68. PubMed ID: 10704996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process formation of the renal glomerular podocyte: is there common molecular machinery for processes of podocytes and neurons?
    Kobayashi N; Gao SY; Chen J; Saito K; Miyawaki K; Li CY; Pan L; Saito S; Terashita T; Matsuda S
    Anat Sci Int; 2004 Mar; 79(1):1-10. PubMed ID: 15088787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative mapping of dense microtubule arrays in mammalian neurons.
    Katrukha EA; Jurriens D; Salas Pastene DM; Kapitein LC
    Elife; 2021 Jul; 10():. PubMed ID: 34313224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendrites differ from axons in patterns of microtubule stability and polymerization during development.
    Kollins KM; Bell RL; Butts M; Withers GS
    Neural Dev; 2009 Jul; 4():26. PubMed ID: 19602271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A composite model for establishing the microtubule arrays of the neuron.
    Baas PW; Yu W
    Mol Neurobiol; 1996 Apr; 12(2):145-61. PubMed ID: 8818148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules.
    Mohan R; John A
    IUBMB Life; 2015 Jun; 67(6):395-403. PubMed ID: 26104829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of actin filaments in the axonal transport of microtubules.
    Hasaka TP; Myers KA; Baas PW
    J Neurosci; 2004 Dec; 24(50):11291-301. PubMed ID: 15601935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speckle microscopic evaluation of microtubule transport in growing nerve processes.
    Chang S; Svitkina TM; Borisy GG; Popov SV
    Nat Cell Biol; 1999 Nov; 1(7):399-403. PubMed ID: 10559982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards an understanding of microtubule function and cell organization: an overview.
    MacRae TH
    Biochem Cell Biol; 1992; 70(10-11):835-41. PubMed ID: 1297349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport.
    Tas RP; Chazeau A; Cloin BMC; Lambers MLA; Hoogenraad CC; Kapitein LC
    Neuron; 2017 Dec; 96(6):1264-1271.e5. PubMed ID: 29198755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.