BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9426401)

  • 1. Fluorescent microsatellite analysis reveals duplication of specific chromosomal regions in papillary renal cell tumors.
    Palmedo G; Fischer J; Kovacs G
    Lab Invest; 1997 Dec; 77(6):633-8. PubMed ID: 9426401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal cell carcinoma of end-stage renal disease: an analysis of chromosome 3, 7, and 17 abnormalities by microsatellite amplification.
    Hughson MD; Bigler S; Dickman K; Kovacs G
    Mod Pathol; 1999 Mar; 12(3):301-9. PubMed ID: 10102616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous chromosome 7 and 17 gain and sex chromosome loss provide evidence that renal metanephric adenoma is related to papillary renal cell carcinoma.
    Brown JA; Anderl KL; Borell TJ; Qian J; Bostwick DG; Jenkins RB
    J Urol; 1997 Aug; 158(2):370-4. PubMed ID: 9224305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of papillary renal cell tumours is associated with loss of Y-chromosome-specific DNA sequences.
    Kovacs G; Tory K; Kovacs A
    J Pathol; 1994 May; 173(1):39-44. PubMed ID: 7931836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial and chromosomal DNA alterations in human chromophobe renal cell carcinomas.
    Kovacs A; Storkel S; Thoenes W; Kovacs G
    J Pathol; 1992 Jul; 167(3):273-7. PubMed ID: 1381433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metanephric adenoma lacks the gains of chromosomes 7 and 17 and loss of Y that are typical of papillary renal cell carcinoma and papillary adenoma.
    Brunelli M; Eble JN; Zhang S; Martignoni G; Cheng L
    Mod Pathol; 2003 Oct; 16(10):1060-3. PubMed ID: 14559991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Duplications of DNA sequences between loci D20S478 and D20S206 at 20q11.2 and between loci D20S902 and D20S480 at 20q13.2 mark new tumor genes in papillary renal cell carcinoma.
    Palmedo G; Fischer J; Kovacs G
    Lab Invest; 1999 Mar; 79(3):311-6. PubMed ID: 10092067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinicopathologic and interphase cytogenetic analysis of papillary (chromophilic) renal cell carcinoma.
    Kattar MM; Grignon DJ; Wallis T; Haas GP; Sakr WA; Pontes JE; Visscher DW
    Mod Pathol; 1997 Nov; 10(11):1143-50. PubMed ID: 9388066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Genetics of renal tumors].
    Oláh E; Jakab Z; Balogh E
    Orv Hetil; 2001 Jul; 142(26):1367-73. PubMed ID: 11478032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gains of chromosomes 7, 17, 12, 16, and 20 and loss of Y occur early in the evolution of papillary renal cell neoplasia: a fluorescent in situ hybridization study.
    Brunelli M; Eble JN; Zhang S; Martignoni G; Cheng L
    Mod Pathol; 2003 Oct; 16(10):1053-9. PubMed ID: 14559990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas.
    Schullerus D; Herbers J; Chudek J; Kanamaru H; Kovacs G
    J Pathol; 1997 Oct; 183(2):151-5. PubMed ID: 9390026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific genetic changes of diagnostic importance in chromophobe renal cell carcinomas.
    Bugert P; Gaul C; Weber K; Herbers J; Akhtar M; Ljungberg B; Kovacs G
    Lab Invest; 1997 Feb; 76(2):203-8. PubMed ID: 9042156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cytogenetic analysis of 19 renal cell tumors].
    Cerasoli S; Spada F; Buda R; Turci A; Giangaspero F
    Pathologica; 2001 Apr; 93(2):118-23. PubMed ID: 11428288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal abnormalities in renal cell neoplasms associated with acquired renal cystic disease. A series studied by comparative genomic hybridization and fluorescence in situ hybridization.
    Gronwald J; Baur AS; Holtgreve-Grez H; Jauch A; Mosimann F; Jichlinski P; Wauters JP; Cremer T; Guillou L
    J Pathol; 1999 Feb; 187(3):308-12. PubMed ID: 10398084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of deletions in the short arm of chromosome 3 in uncultured renal cell carcinomas by interphase cytogenetics.
    Siebert R; Jacobi C; Matthiesen P; Zühlke-Jenisch R; Potratz C; Zhang Y; Stöckle M; Klöppel G; Grote W; Schlegelberger B
    J Urol; 1998 Aug; 160(2):534-9. PubMed ID: 9679924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of chromosomes in clear cell renal cell carcinoma and in corresponding renal parenchyma.
    Feil G; Leipoldt M; Nelde HJ; Wunderer A; Wechsel HW; Kaiser P; Bichler KH
    Anticancer Res; 1999; 19(2C):1477-82. PubMed ID: 10365127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular differential diagnosis of renal cell carcinomas by microsatellite analysis.
    Bugert P; Kovacs G
    Am J Pathol; 1996 Dec; 149(6):2081-8. PubMed ID: 8952540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trisomy 3 in renal cell carcinoma.
    Renshaw AA; Fletcher JA
    Mod Pathol; 1997 May; 10(5):481-4. PubMed ID: 9160314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initiating genetic events in small renal neoplasms detected by comparative genomic hybridization.
    Presti JC; Moch H; Gelb AB; Huynh D; Waldman FM
    J Urol; 1998 Oct; 160(4):1557-61. PubMed ID: 9751412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overrepresentation of 7q31 and 17q in renal cell carcinomas.
    Glukhova L; Goguel AF; Chudoba I; Angevin E; Pavon C; Terrier-Lacombe MJ; Meddeb M; Escudier B; Bernheim A
    Genes Chromosomes Cancer; 1998 Jul; 22(3):171-8. PubMed ID: 9624528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.