These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 942666)
1. Disulfide bond-modified trypsinogen. Role of disulfide 179-203 on the specificity characteristics of bovine trypsin toward synthetic substrates. Knights RJ; Light A J Biol Chem; 1976 Jan; 251(1):222-8. PubMed ID: 942666 [TBL] [Abstract][Full Text] [Related]
2. Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain. Lu D; Yuan X; Zheng X; Sadler JE J Biol Chem; 1997 Dec; 272(50):31293-300. PubMed ID: 9395456 [TBL] [Abstract][Full Text] [Related]
3. Interactions of derivatives of guanidinophenylalanine and guanidinophenylglycine with Streptomyces griseus trypsin. Hatanaka Y; Tsunematsu H; Mizusaki K; Makisumi S Biochim Biophys Acta; 1985 Dec; 832(3):274-9. PubMed ID: 3935172 [TBL] [Abstract][Full Text] [Related]
4. The kinetics of hydrolysis of some extended N-aminoacyl-l-lysine methyl esters. Green GD; Tomalin G Eur J Biochem; 1976 Sep; 68(1):131-7. PubMed ID: 986943 [TBL] [Abstract][Full Text] [Related]
5. Design of peptide enzymes (pepzymes): surface-simulation synthetic peptides that mimic the chymotrypsin and trypsin active sites exhibit the activity and specificity of the respective enzyme. Atassi MZ; Manshouri T Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8282-6. PubMed ID: 8367494 [TBL] [Abstract][Full Text] [Related]
6. The preparation and properties of the catalytic subunit of bovine enterokinase. Light A; Fonseca P J Biol Chem; 1984 Nov; 259(21):13195-8. PubMed ID: 6386810 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of hydrolysis of amide and anilide substrates of p-guanidino-L-phenylalanine by bovine and porcine trypsins. Tsunematsu H; Nishimura H; Mizusaki K; Makisumi S J Biochem; 1985 Feb; 97(2):617-23. PubMed ID: 4008471 [TBL] [Abstract][Full Text] [Related]
8. The two human trypsinogens: catalytic properties of the corresponding trypsins. Colomb E; Guy O; Deprez P; Michel R; Figarella C Biochim Biophys Acta; 1978 Jul; 525(1):186-93. PubMed ID: 28765 [TBL] [Abstract][Full Text] [Related]
9. Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin. Graf L; Craik CS; Patthy A; Roczniak S; Fletterick RJ; Rutter WJ Biochemistry; 1987 May; 26(9):2616-23. PubMed ID: 3111531 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence studies on the interaction of dansyl-L-arginine with trypsin and trypsinogen. Goto S; Hess GP J Biochem; 1979 Apr; 85(4):961-5. PubMed ID: 457637 [TBL] [Abstract][Full Text] [Related]
11. Activities of anionic and cationic trypsins in the temperature range from 5 to 37 degrees C. Mutant anionic trypsins as a model of cold-adapted (psychrophilic) enzymes. Mikhailova AG; Rumsh LD; Dalgalarrondo M; Chobert JM; Haertle T Biochemistry (Mosc); 2003 Aug; 68(8):926-33. PubMed ID: 12948394 [TBL] [Abstract][Full Text] [Related]
12. [Comparative kinetic studies of the primary specificity of bovine and salmon trypsin]. Taran LD; Smovdyr' IN Biokhimiia; 1992 Jan; 57(1):55-60. PubMed ID: 1391204 [TBL] [Abstract][Full Text] [Related]
13. Catalysis by serine proteases and their zymogens. A study of acyl intermediates by circular dichroism. Kerr MA; Walsh KA; Neurath H Biochemistry; 1975 Nov; 14(23):5088-94. PubMed ID: 1238107 [TBL] [Abstract][Full Text] [Related]
14. Refolding of the mixed disulfide of bovine trypsinogen and glutathione. Odorzynski TW; Light A J Biol Chem; 1979 May; 254(10):4291-5. PubMed ID: 438188 [TBL] [Abstract][Full Text] [Related]
15. Trypsin from Greenland cod, Gadus ogac. Isolation and comparative properties. Simpson BK; Haard NF Comp Biochem Physiol B; 1984; 79(4):613-22. PubMed ID: 6518765 [TBL] [Abstract][Full Text] [Related]
16. Single peptide bond hydrolysis/resynthesis in squash inhibitors of serine proteinases. 1. Kinetics and thermodynamics of the interaction between squash inhibitors and bovine beta-trypsin. Otlewski J; Zbyryt T Biochemistry; 1994 Jan; 33(1):200-7. PubMed ID: 8286341 [TBL] [Abstract][Full Text] [Related]
17. Comparative studies on the mechanism of activation of the two human trypsinogens. Colomb E; Figarella C Biochim Biophys Acta; 1979 Dec; 571(2):343-51. PubMed ID: 508771 [TBL] [Abstract][Full Text] [Related]
18. The role of the Cys191-Cys220 disulfide bond in trypsin: new targets for engineering substrate specificity. Wang EC; Hung SH; Cahoon M; Hedstrom L Protein Eng; 1997 Apr; 10(4):405-11. PubMed ID: 9194165 [TBL] [Abstract][Full Text] [Related]
19. Refolding of reduced, denatured trypsinogen and trypsin immobilized on Agarose beads. Sinha NK; Light A J Biol Chem; 1975 Nov; 250(22):8624-9. PubMed ID: 241750 [TBL] [Abstract][Full Text] [Related]
20. Catalytic and ligand binding properties of bovine trypsinogen and its complex with the effector dipeptide Ile-Val. A comparative study. Antonini E; Ascenzi P; Bolognesi M; Guarneri M; Menegatti E; Amiconi G Mol Cell Biochem; 1984; 60(2):163-81. PubMed ID: 6708945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]