These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9427102)

  • 1. Real-time neural network based camera localization and its extension to mobile robot control.
    Choi DH; Oh SY
    Int J Neural Syst; 1997 Jun; 8(3):279-93. PubMed ID: 9427102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect iterative learning control for a discrete visual servo without a camera-robot model.
    Jiang P; Bamforth LC; Feng Z; Baruch JE; Chen Y
    IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):863-76. PubMed ID: 17702285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An intelligent space for mobile robot localization using a multi-camera system.
    Rampinelli M; Covre VB; de Queiroz FM; Vassallo RF; Bastos-Filho TF; Mazo M
    Sensors (Basel); 2014 Aug; 14(8):15039-64. PubMed ID: 25196009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Artificial Organic Control System for Mobile Robot Navigation in Assisted Living Using Vision- and Neural-Based Strategies.
    Ponce H; Moya-Albor E; Brieva J
    Comput Intell Neurosci; 2018; 2018():4189150. PubMed ID: 30627141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive magnetic-based localization for precise untethered medical instrument tracking.
    Sun Z; Maréchal L; Foong S
    Comput Methods Programs Biomed; 2018 Mar; 156():151-161. PubMed ID: 29428067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging variable sensor spatial acuity with a homogeneous, multi-scale place recognition framework.
    Jacobson A; Chen Z; Milford M
    Biol Cybern; 2018 Jun; 112(3):209-225. PubMed ID: 29353330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-inspired homogeneous multi-scale place recognition.
    Chen Z; Lowry S; Jacobson A; Hasselmo ME; Milford M
    Neural Netw; 2015 Dec; 72():48-61. PubMed ID: 26576467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments.
    Araújo R
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1235-49. PubMed ID: 17001984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inexpensive method for kinematic calibration of a parallel robot by using one hand-held camera as main sensor.
    Traslosheros A; Sebastián JM; Torrijos J; Carelli R; Castillo E
    Sensors (Basel); 2013 Aug; 13(8):9941-65. PubMed ID: 23921827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensor Data Fusion for a Mobile Robot Using Neural Networks.
    Barreto-Cubero AJ; Gómez-Espinosa A; Escobedo Cabello JA; Cuan-Urquizo E; Cruz-Ramírez SR
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event detection and localization for small mobile robots using reservoir computing.
    Antonelo EA; Schrauwen B; Stroobandt D
    Neural Netw; 2008 Aug; 21(6):862-71. PubMed ID: 18662855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Robot 2.5D Localization and Mapping Using a Monte Carlo Algorithm on a Multi-Level Surface.
    Rosas-Cervantes VA; Hoang QD; Lee SG; Choi JH
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.
    Li Y; Sun R; Wang Y; Li H; Zheng X
    PLoS One; 2016; 11(11):e0165600. PubMed ID: 27806074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous learning based on cost assumptions: theoretical studies and experiments in robot control.
    Ribeiro CH; Hemerly EM
    Int J Neural Syst; 1999 Jun; 9(3):243-9. PubMed ID: 10560764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target.
    Shirzadeh M; Amirkhani A; Jalali A; Mosavi MR
    ISA Trans; 2015 Nov; 59():290-302. PubMed ID: 26521725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network-based multiple robot simultaneous localization and mapping.
    Saeedi S; Paull L; Trentini M; Li H
    IEEE Trans Neural Netw; 2011 Dec; 22(12):2376-87. PubMed ID: 22156983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-state tracking control of a mobile robot using neural networks.
    Chaitanya VS
    Int J Neural Syst; 2005 Oct; 15(5):403-14. PubMed ID: 16278944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion Planning of Autonomous Mobile Robot Using Recurrent Fuzzy Neural Network Trained by Extended Kalman Filter.
    Zhu Q; Han Y; Liu P; Xiao Y; Lu P; Cai C
    Comput Intell Neurosci; 2019; 2019():1934575. PubMed ID: 30863434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Calibration of RSS Fingerprinting Based Systems Using a Mobile Robot and Machine Learning.
    Kolakowski M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.