BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9427102)

  • 1. Real-time neural network based camera localization and its extension to mobile robot control.
    Choi DH; Oh SY
    Int J Neural Syst; 1997 Jun; 8(3):279-93. PubMed ID: 9427102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect iterative learning control for a discrete visual servo without a camera-robot model.
    Jiang P; Bamforth LC; Feng Z; Baruch JE; Chen Y
    IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):863-76. PubMed ID: 17702285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An intelligent space for mobile robot localization using a multi-camera system.
    Rampinelli M; Covre VB; de Queiroz FM; Vassallo RF; Bastos-Filho TF; Mazo M
    Sensors (Basel); 2014 Aug; 14(8):15039-64. PubMed ID: 25196009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Artificial Organic Control System for Mobile Robot Navigation in Assisted Living Using Vision- and Neural-Based Strategies.
    Ponce H; Moya-Albor E; Brieva J
    Comput Intell Neurosci; 2018; 2018():4189150. PubMed ID: 30627141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive magnetic-based localization for precise untethered medical instrument tracking.
    Sun Z; Maréchal L; Foong S
    Comput Methods Programs Biomed; 2018 Mar; 156():151-161. PubMed ID: 29428067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging variable sensor spatial acuity with a homogeneous, multi-scale place recognition framework.
    Jacobson A; Chen Z; Milford M
    Biol Cybern; 2018 Jun; 112(3):209-225. PubMed ID: 29353330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-inspired homogeneous multi-scale place recognition.
    Chen Z; Lowry S; Jacobson A; Hasselmo ME; Milford M
    Neural Netw; 2015 Dec; 72():48-61. PubMed ID: 26576467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments.
    Araújo R
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1235-49. PubMed ID: 17001984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inexpensive method for kinematic calibration of a parallel robot by using one hand-held camera as main sensor.
    Traslosheros A; Sebastián JM; Torrijos J; Carelli R; Castillo E
    Sensors (Basel); 2013 Aug; 13(8):9941-65. PubMed ID: 23921827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensor Data Fusion for a Mobile Robot Using Neural Networks.
    Barreto-Cubero AJ; Gómez-Espinosa A; Escobedo Cabello JA; Cuan-Urquizo E; Cruz-Ramírez SR
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event detection and localization for small mobile robots using reservoir computing.
    Antonelo EA; Schrauwen B; Stroobandt D
    Neural Netw; 2008 Aug; 21(6):862-71. PubMed ID: 18662855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Robot 2.5D Localization and Mapping Using a Monte Carlo Algorithm on a Multi-Level Surface.
    Rosas-Cervantes VA; Hoang QD; Lee SG; Choi JH
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.
    Li Y; Sun R; Wang Y; Li H; Zheng X
    PLoS One; 2016; 11(11):e0165600. PubMed ID: 27806074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous learning based on cost assumptions: theoretical studies and experiments in robot control.
    Ribeiro CH; Hemerly EM
    Int J Neural Syst; 1999 Jun; 9(3):243-9. PubMed ID: 10560764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target.
    Shirzadeh M; Amirkhani A; Jalali A; Mosavi MR
    ISA Trans; 2015 Nov; 59():290-302. PubMed ID: 26521725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network-based multiple robot simultaneous localization and mapping.
    Saeedi S; Paull L; Trentini M; Li H
    IEEE Trans Neural Netw; 2011 Dec; 22(12):2376-87. PubMed ID: 22156983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-state tracking control of a mobile robot using neural networks.
    Chaitanya VS
    Int J Neural Syst; 2005 Oct; 15(5):403-14. PubMed ID: 16278944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion Planning of Autonomous Mobile Robot Using Recurrent Fuzzy Neural Network Trained by Extended Kalman Filter.
    Zhu Q; Han Y; Liu P; Xiao Y; Lu P; Cai C
    Comput Intell Neurosci; 2019; 2019():1934575. PubMed ID: 30863434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Calibration of RSS Fingerprinting Based Systems Using a Mobile Robot and Machine Learning.
    Kolakowski M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.