These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9427357)

  • 21. The Anatomy and Physiology of Eyeblink Classical Conditioning.
    Takehara-Nishiuchi K
    Curr Top Behav Neurosci; 2018; 37():297-323. PubMed ID: 28025812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit.
    Brigman JL; Feyder M; Saksida LM; Bussey TJ; Mishina M; Holmes A
    Learn Mem; 2008 Feb; 15(2):50-4. PubMed ID: 18230672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of diverse glutamate receptors in brain functions elucidated by subunit-specific and region-specific gene targeting.
    Mori H; Mishina M
    Life Sci; 2003 Dec; 74(2-3):329-36. PubMed ID: 14607261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deletion of the NR2A subunit prevents developmental changes of NMDA-mEPSCs in cultured mouse cerebellar granule neurones.
    Fu Z; Logan SM; Vicini S
    J Physiol; 2005 Mar; 563(Pt 3):867-81. PubMed ID: 15649973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins.
    Wenzel A; Fritschy JM; Mohler H; Benke D
    J Neurochem; 1997 Feb; 68(2):469-78. PubMed ID: 9003031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro eye-blink classical conditioning is NMDA receptor dependent and involves redistribution of AMPA receptor subunit GluR4.
    Keifer J
    J Neurosci; 2001 Apr; 21(7):2434-41. PubMed ID: 11264317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural substrates of eyeblink conditioning: acquisition and retention.
    Christian KM; Thompson RF
    Learn Mem; 2003; 10(6):427-55. PubMed ID: 14657256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conditioned climbing fiber responses in cerebellar cortex and nuclei.
    Ten Brinke MM; Boele HJ; De Zeeuw CI
    Neurosci Lett; 2019 Jan; 688():26-36. PubMed ID: 29689340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pronounced reduction of acquisition of conditioned eyeblink responses in young adults with focal cerebellar lesions impedes conclusions on the role of the cerebellum in extinction and savings.
    Ernst TM; Beyer L; Mueller OM; Göricke S; Ladd ME; Gerwig M; Timmann D
    Neuropsychologia; 2016 May; 85():287-300. PubMed ID: 27020135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit.
    Sakimura K; Kutsuwada T; Ito I; Manabe T; Takayama C; Kushiya E; Yagi T; Aizawa S; Inoue Y; Sugiyama H
    Nature; 1995 Jan; 373(6510):151-5. PubMed ID: 7816096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered effects of ethanol in NR2A(DeltaC/DeltaC) mice expressing C-terminally truncated NR2A subunit of NMDA receptor.
    Gordey M; Mekmanee L; Mody I
    Neuroscience; 2001; 105(4):987-97. PubMed ID: 11530236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of hippocampal NMDA receptors in trace eyeblink conditioning.
    Sakamoto T; Takatsuki K; Kawahara S; Kirino Y; Niki H; Mishina M
    Brain Res; 2005 Mar; 1039(1-2):130-6. PubMed ID: 15781054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMDA receptor NR2B subunit over-expression increases cerebellar granule cell migratory activity.
    Tárnok K; Czöndör K; Jelitai M; Czirók A; Schlett K
    J Neurochem; 2008 Feb; 104(3):818-29. PubMed ID: 18005003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cerebellar cortex and cerebellar nuclei are concomitantly activated during eyeblink conditioning: a 7T fMRI study in humans.
    Thürling M; Kahl F; Maderwald S; Stefanescu RM; Schlamann M; Boele HJ; De Zeeuw CI; Diedrichsen J; Ladd ME; Koekkoek SK; Timmann D
    J Neurosci; 2015 Jan; 35(3):1228-39. PubMed ID: 25609637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular distinction of three N-methyl-D-aspartate-receptor subtypes in situ and developmental receptor maturation demonstrated with the photoaffinity ligand 125I-labeled CGP 55802A.
    Marti T; Benke D; Mertens S; Heckendorn R; Pozza M; Allgeier H; Angst C; Laurie D; Seeburg P; Mohler H
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8434-8. PubMed ID: 8378316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cerebellar cortical inhibition and classical eyeblink conditioning.
    Bao S; Chen L; Kim JJ; Thompson RF
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1592-7. PubMed ID: 11805298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional basis of associative learning and its relationships with long-term potentiation evoked in the involved neural circuits: Lessons from studies in behaving mammals.
    Gruart A; Leal-Campanario R; López-Ramos JC; Delgado-García JM
    Neurobiol Learn Mem; 2015 Oct; 124():3-18. PubMed ID: 25916668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Analysis of neuronal functions in mice lacking the NMDA receptor epsilon 1 subunit].
    Miyamoto Y; Nabeshima T
    Nihon Yakurigaku Zasshi; 2002 Jun; 119(6):327-35. PubMed ID: 12089904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pavlovian eyeblink conditioning is severely impaired in tottering mice.
    de Oude NL; Hoebeek FE; Ten Brinke MM; de Zeeuw CI; Boele HJ
    J Neurophysiol; 2021 Feb; 125(2):398-407. PubMed ID: 33326350
    [No Abstract]   [Full Text] [Related]  

  • 40. Impaired long-trace eyeblink conditioning in a Tg2576 mouse model of Alzheimer's disease.
    Kishimoto Y; Oku I; Nishigawa A; Nishimoto A; Kirino Y
    Neurosci Lett; 2012 Jan; 506(1):155-9. PubMed ID: 22085694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.