These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9427404)

  • 1. Secondary structures and starvation-induced frameshifting.
    Atkinson J; Dodge M; Gallant J
    Mol Microbiol; 1997 Nov; 26(4):747-53. PubMed ID: 9427404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the mechanism of leftward frameshifting at several hungry codons.
    Barak Z; Lindsley D; Gallant J
    J Mol Biol; 1996 Mar; 256(4):676-84. PubMed ID: 8642590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting.
    Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE
    EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA.
    Chamorro M; Parkin N; Varmus HE
    Proc Natl Acad Sci U S A; 1992 Jan; 89(2):713-7. PubMed ID: 1309954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for an RNA pseudoknot loop-helix interaction essential for efficient -1 ribosomal frameshifting.
    Liphardt J; Napthine S; Kontos H; Brierley I
    J Mol Biol; 1999 May; 288(3):321-35. PubMed ID: 10329145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative mutational analysis of cis-acting RNA signals for translational frameshifting in HIV-1 and HTLV-2.
    Kim YG; Maas S; Rich A
    Nucleic Acids Res; 2001 Mar; 29(5):1125-31. PubMed ID: 11222762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity.
    Garcia-Miranda P; Becker JT; Benner BE; Blume A; Sherer NM; Butcher SE
    J Virol; 2016 Aug; 90(15):6906-6917. PubMed ID: 27194769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of the RNA pseudoknot involved in efficient ribosomal frameshifting in simian retrovirus-1.
    Sung D; Kang H
    Nucleic Acids Res; 1998 Mar; 26(6):1369-72. PubMed ID: 9490779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes.
    Qiao Q; Yan Y; Guo J; Du S; Zhang J; Jia R; Ren H; Qiao Y; Li Q
    J Biomol Struct Dyn; 2017 Jun; 35(8):1629-1653. PubMed ID: 27485859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence element required for efficient -1 ribosomal frameshifting in red clover necrotic mosaic dianthovirus.
    Kim KH; Lommel SA
    Virology; 1998 Oct; 250(1):50-9. PubMed ID: 9770419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmed ribosomal frameshifting in decoding the SARS-CoV genome.
    Baranov PV; Henderson CM; Anderson CB; Gesteland RF; Atkins JF; Howard MT
    Virology; 2005 Feb; 332(2):498-510. PubMed ID: 15680415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutant RNA pseudoknot that promotes ribosomal frameshifting in mouse mammary tumor virus.
    Kang H; Tinoco I
    Nucleic Acids Res; 1997 May; 25(10):1943-9. PubMed ID: 9115361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prokaryotic and eukaryotic translational machineries respond differently to the frameshifting RNA signal from plant or animal virus.
    Sung D; Kang H
    Virus Res; 2003 Apr; 92(2):165-70. PubMed ID: 12686425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site.
    Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW
    RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion-RNA interactions in the RNA pseudoknot of a ribosomal frameshifting site: molecular modeling studies.
    Le SY; Chen JH; Pattabiraman N; Maizel JV
    J Biomol Struct Dyn; 1998 Aug; 16(1):1-11. PubMed ID: 9745889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1.
    Dulude D; Baril M; Brakier-Gingras L
    Nucleic Acids Res; 2002 Dec; 30(23):5094-102. PubMed ID: 12466532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. E. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent.
    Weiss RB; Dunn DM; Shuh M; Atkins JF; Gesteland RF
    New Biol; 1989 Nov; 1(2):159-69. PubMed ID: 2562219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosome bypassing elicited by tRNA depletion.
    Lindsley D; Gallant J; Guarneros G
    Mol Microbiol; 2003 Jun; 48(5):1267-74. PubMed ID: 12787354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A characteristic bent conformation of RNA pseudoknots promotes -1 frameshifting during translation of retroviral RNA.
    Chen X; Kang H; Shen LX; Chamorro M; Varmus HE; Tinoco I
    J Mol Biol; 1996 Jul; 260(4):479-83. PubMed ID: 8759314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.