These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 9427520)
1. In vitro phosphorylation of acetylcholinesterase at non-consensus protein kinase A sites enhances the rate of acetylcholine hydrolysis. Grifman M; Arbel A; Ginzberg D; Glick D; Elgavish S; Shaanan B; Soreq H Brain Res Mol Brain Res; 1997 Nov; 51(1-2):179-87. PubMed ID: 9427520 [TBL] [Abstract][Full Text] [Related]
2. Acetylthiocholine binds to asp74 at the peripheral site of human acetylcholinesterase as the first step in the catalytic pathway. Mallender WD; Szegletes T; Rosenberry TL Biochemistry; 2000 Jul; 39(26):7753-63. PubMed ID: 10869180 [TBL] [Abstract][Full Text] [Related]
3. A steric blockade model for inhibition of acetylcholinesterase by peripheral site ligands and substrate. Rosenberry TL; Mallender WD; Thomas PJ; Szegletes T Chem Biol Interact; 1999 May; 119-120():85-97. PubMed ID: 10421442 [TBL] [Abstract][Full Text] [Related]
4. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate. Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886 [TBL] [Abstract][Full Text] [Related]
5. The natural product dihydrotanshinone I provides a prototype for uncharged inhibitors that bind specifically to the acetylcholinesterase peripheral site with nanomolar affinity. Beri V; Wildman SA; Shiomi K; Al-Rashid ZF; Cheung J; Rosenberry TL Biochemistry; 2013 Oct; 52(42):7486-99. PubMed ID: 24040835 [TBL] [Abstract][Full Text] [Related]
6. Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect. Szegletes T; Mallender WD; Thomas PJ; Rosenberry TL Biochemistry; 1999 Jan; 38(1):122-33. PubMed ID: 9890890 [TBL] [Abstract][Full Text] [Related]
7. Structural insights into substrate traffic and inhibition in acetylcholinesterase. Colletier JP; Fournier D; Greenblatt HM; Stojan J; Sussman JL; Zaccai G; Silman I; Weik M EMBO J; 2006 Jun; 25(12):2746-56. PubMed ID: 16763558 [TBL] [Abstract][Full Text] [Related]
8. Hydrolysis of low concentrations of the acetylthiocholine analogs acetyl(homo)thiocholine and acetyl(nor)thiocholine by acetylcholinesterase may be limited by selective gating at the enzyme peripheral site. Beri V; Auletta JT; Maharvi GM; Wood JF; Fauq AH; Rosenberry TL Chem Biol Interact; 2013 Mar; 203(1):38-43. PubMed ID: 23047027 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of total enzymatic hydrolysis of acetylcholine and acetylthiocholine. Zdrazilová P; Stepánková S; Vránová M; Komers K; Komersová A; Cegan A Z Naturforsch C J Biosci; 2006; 61(3-4):289-94. PubMed ID: 16729592 [TBL] [Abstract][Full Text] [Related]
10. Reversible inhibition of acetylcholinesterase and butyrylcholinesterase by 4,4'-bipyridine and by a coumarin derivative. Simeon-Rudolf V; Kovarik Z; Radić Z; Reiner E Chem Biol Interact; 1999 May; 119-120():119-28. PubMed ID: 10421445 [TBL] [Abstract][Full Text] [Related]
11. Monoclonal antibody AE-2 modulates carbamate and organophosphate inhibition of fetal bovine serum acetylcholinesterase. Wolfe AD; Chiang PK; Doctor BP; Fryar N; Rhee JP; Saeed M Mol Pharmacol; 1993 Dec; 44(6):1152-7. PubMed ID: 8264551 [TBL] [Abstract][Full Text] [Related]
12. Cloning and expression of acetylcholinesterase from Bungarus fasciatus venom. A new type of cooh-terminal domain; involvement of a positively charged residue in the peripheral site. Cousin X; Bon S; Duval N; Massoulié J; Bon C J Biol Chem; 1996 Jun; 271(25):15099-108. PubMed ID: 8662867 [TBL] [Abstract][Full Text] [Related]
14. Inhibitors tethered near the acetylcholinesterase active site serve as molecular rulers of the peripheral and acylation sites. Johnson JL; Cusack B; Hughes TF; McCullough EH; Fauq A; Romanovskis P; Spatola AF; Rosenberry TL J Biol Chem; 2003 Oct; 278(40):38948-55. PubMed ID: 12851386 [TBL] [Abstract][Full Text] [Related]
15. Phosphoacetylcholinesterase: toxicity of phosphorus oxychloride to mammals and insects that can be attributed to selective phosphorylation of acetylcholinesterase by phosphorodichloridic acid. Quistad GB; Zhang N; Sparks SE; Casida JE Chem Res Toxicol; 2000 Jul; 13(7):652-7. PubMed ID: 10898598 [TBL] [Abstract][Full Text] [Related]
16. Why is the hydrolytic activity of acetylcholinesterase pH dependent? Kinetic study of acetylcholine and acetylthiocholine hydrolysis catalyzed by acetylcholinesterase from electric eel. Komersová A; Kovářová M; Komers K; Lochař V; Čegan A Z Naturforsch C J Biosci; 2018 Sep; 73(9-10):345-351. PubMed ID: 29936491 [No Abstract] [Full Text] [Related]
17. Kinetic analysis of inhibition of brain and red blood cell acetylcholinesterase and plasma cholinesterase by acephate or methamidophos. Singh AK Toxicol Appl Pharmacol; 1985 Nov; 81(2):302-9. PubMed ID: 4060156 [TBL] [Abstract][Full Text] [Related]
18. In vitro phosphorylation by cAMP-dependent protein kinase up-regulates recombinant Saccharomyces cerevisiae mannosylphosphodolichol synthase. Banerjee DK; Carrasquillo EA; Hughey P; Schutzbach JS; Martínez JA; Baksi K J Biol Chem; 2005 Feb; 280(6):4174-81. PubMed ID: 15548536 [TBL] [Abstract][Full Text] [Related]
19. Molecular basis of inhibition of substrate hydrolysis by a ligand bound to the peripheral site of acetylcholinesterase. Auletta JT; Johnson JL; Rosenberry TL Chem Biol Interact; 2010 Sep; 187(1-3):135-41. PubMed ID: 20493829 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. Cheng X; Ma Y; Moore M; Hemmings BA; Taylor SS Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9849-54. PubMed ID: 9707564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]