These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 9427537)

  • 21. Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum-DNA adducts.
    Vaisman A; Lim SE; Patrick SM; Copeland WC; Hinkle DC; Turchi JJ; Chaney SG
    Biochemistry; 1999 Aug; 38(34):11026-39. PubMed ID: 10460158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An oligomeric form of E. coli UvrD is required for optimal helicase activity.
    Ali JA; Maluf NK; Lohman TM
    J Mol Biol; 1999 Nov; 293(4):815-34. PubMed ID: 10543970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential binding of HMG1, HMG2, and a single HMG box to cisplatin-damaged DNA.
    Farid RS; Bianchi ME; Falciola L; Engelsberg BN; Billings PC
    Toxicol Appl Pharmacol; 1996 Dec; 141(2):532-9. PubMed ID: 8975778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual function of Ixr1 in transcriptional regulation and recognition of cisplatin-DNA adducts is caused by differential binding through its two HMG-boxes.
    Vizoso-Vázquez A; Lamas-Maceiras M; Fernández-Leiro R; Rico-Díaz A; Becerra M; Cerdán ME
    Biochim Biophys Acta Gene Regul Mech; 2017 Feb; 1860(2):256-269. PubMed ID: 27871851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of novel plasmid constructs to demonstrate fludarabine triphosphate inhibition of nucleotide excision repair of a site-specific 1,2-d(GpG) intrastrand cisplatin adduct.
    Li MJ; Yang LY
    Int J Oncol; 1999 Dec; 15(6):1177-83. PubMed ID: 10568825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of high mobility group protein binding to cisplatin-damaged DNA.
    Billings PC; Davis RJ; Engelsberg BN; Skov KA; Hughes EN
    Biochem Biophys Res Commun; 1992 Nov; 188(3):1286-94. PubMed ID: 1445361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulation of DNA-dependent protein kinase activity by high mobility group proteins 1 and 2.
    Watanabe F; Shirakawa H; Yoshida M; Tsukada K; Teraoka H
    Biochem Biophys Res Commun; 1994 Jul; 202(2):736-42. PubMed ID: 8048945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate structure influences binding of the non-histone protein HMG-I(Y) to free nucleosomal DNA.
    Reeves R; Wolffe AP
    Biochemistry; 1996 Apr; 35(15):5063-74. PubMed ID: 8664299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins.
    Ohndorf UM; Rould MA; He Q; Pabo CO; Lippard SJ
    Nature; 1999 Jun; 399(6737):708-12. PubMed ID: 10385126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identity of nuclear high-mobility-group protein, HMG-1, and sulfoglucuronyl carbohydrate-binding protein, SBP-1, in brain.
    Chou DK; Evans JE; Jungalwala FB
    J Neurochem; 2001 Apr; 77(1):120-31. PubMed ID: 11279268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LEF-1 recognition of platinated GG sequences within double-stranded DNA. Influence of flanking bases.
    Chválová K; Sari MA; Bombard S; Kozelka J
    J Inorg Biochem; 2008 Feb; 102(2):242-50. PubMed ID: 17961652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Native HMGB1 protein inhibits repair of cisplatin-damaged nucleosomes in vitro.
    Ugrinova I; Zlateva S; Pashev IG; Pasheva EA
    Int J Biochem Cell Biol; 2009 Jul; 41(7):1556-62. PubMed ID: 19401149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneously monitoring DNA binding and helicase-catalyzed DNA unwinding by fluorescence polarization.
    Xu HQ; Zhang AH; Auclair C; Xi XG
    Nucleic Acids Res; 2003 Jul; 31(14):e70. PubMed ID: 12853647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA sequence context and protein composition modulate HMG-domain protein recognition of cisplatin-modified DNA.
    Dunham SU; Lippard SJ
    Biochemistry; 1997 Sep; 36(38):11428-36. PubMed ID: 9298962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High mobility group proteins 1 and 2 recognize chromium-damaged DNA.
    Wang JF; Bashir M; Engelsberg BN; Witmer C; Rozmiarek H; Billings PC
    Carcinogenesis; 1997 Feb; 18(2):371-5. PubMed ID: 9054631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding of Ixr1, a yeast HMG-domain protein, to cisplatin-DNA adducts in vitro and in vivo.
    McA'Nulty MM; Whitehead JP; Lippard SJ
    Biochemistry; 1996 May; 35(19):6089-99. PubMed ID: 8634251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a novel protein that specifically binds to DNA modified by N-acetoxy-acetylaminofluorene and cis-diamminedichloroplatinum.
    Pietrowska M; Widłak P
    Acta Biochim Pol; 2005; 52(4):867-74. PubMed ID: 15940347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High mobility group proteins stimulate DNA cleavage by apoptotic endonuclease DFF40/CAD due to HMG-box interactions with DNA.
    Kalinowska-Herok M; Widłak P
    Acta Biochim Pol; 2008; 55(1):21-6. PubMed ID: 18239742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Competition between HMG-I(Y), HMG-1 and histone H1 on four-way junction DNA.
    Hill DA; Reeves R
    Nucleic Acids Res; 1997 Sep; 25(17):3523-31. PubMed ID: 9254714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of the RNA-DNA helicase activity of Escherichia coli transcription termination factor rho. 2. Processivity, ATP consumption, and RNA binding.
    Walstrom KM; Dozono JM; von Hippel PH
    Biochemistry; 1997 Jul; 36(26):7993-8004. PubMed ID: 9201946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.