These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 9427836)

  • 1. Comparative dynamic evaluation of the sliding/characteristics of the Gamma nail: a biomechanical analysis.
    Haynes RC; Miles AW
    Proc Inst Mech Eng H; 1997; 211(5):411-7. PubMed ID: 9427836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study of the failure modes of the Gamma Locking Nail and AO Dynamic Hip Screw under static loading: a cadaveric study.
    Haynes RC; Pöll RG; Miles AW; Weston RB
    Med Eng Phys; 1997 Jul; 19(5):446-53. PubMed ID: 9338885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forces required to initiate sliding in second-generation intramedullary nails.
    Loch DA; Kyle RF; Bechtold JE; Kane M; Anderson K; Sherman RE
    J Bone Joint Surg Am; 1998 Nov; 80(11):1626-31. PubMed ID: 9840631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical analysis of the sliding characteristics of compression hip screws.
    Kyle RF; Wright TM; Burstein AH
    J Bone Joint Surg Am; 1980 Dec; 62(8):1308-14. PubMed ID: 7440609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of two different trochanteric nail lag-screw designs on fixation stability of four-part intertrochanteric fractures: a clinical and biomechanical study.
    Takemoto RC; Lekic N; Schwarzkopf R; Kummer FJ; Egol KA
    J Orthop Sci; 2014 Jan; 19(1):112-9. PubMed ID: 24248549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forces required to dynamize sliding screws in gamma nail and selfdynamizable internal fixator.
    Mitkovic MM; Korunovic ND; Milenkovic SS; Stojiljkovic PM; Manic MT; Trajanovic MD
    BMC Musculoskelet Disord; 2024 Apr; 25(1):271. PubMed ID: 38589829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of interlocking lag screw design in intramedullary nailing of unstable pertrochanteric fractures.
    Hoffmann S; Paetzold R; Stephan D; Püschel K; Buehren V; Augat P
    J Orthop Trauma; 2013 Sep; 27(9):483-90. PubMed ID: 23860133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lag screw design and lubrication on sliding in trochanteric nails.
    Kummer FJ
    Bull NYU Hosp Jt Dis; 2010; 68(1):29-32. PubMed ID: 20345360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The trochanteric nail versus the sliding hip screw for intertrochanteric hip fractures: a review of 93 cases.
    Crawford CH; Malkani AL; Cordray S; Roberts CS; Sligar W
    J Trauma; 2006 Feb; 60(2):325-8; discussion 328-9. PubMed ID: 16508490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical analysis of the Gamma nail and sliding hip screw.
    Mahomed N; Harrington I; Kellam J; Maistrelli G; Hearn T; Vroemen J
    Clin Orthop Relat Res; 1994 Jul; (304):280-8. PubMed ID: 8020229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical evaluation of primary stiffness of tibiotalocalcaneal fusion with intramedullary nails.
    Mückley T; Eichorn S; Hoffmeier K; von Oldenburg G; Speitling A; Hoffmann GO; Bühren V
    Foot Ankle Int; 2007 Feb; 28(2):224-31. PubMed ID: 17296144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of distal intraarticular tibial fractures: A biomechanical evaluation of intramedullary nailing vs. angle-stable plate osteosynthesis.
    Kuhn S; Greenfield J; Arand C; Jarmolaew A; Appelmann P; Mehler D; Rommens PM
    Injury; 2015 Oct; 46 Suppl 4():S99-S103. PubMed ID: 26542874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angle-stable and compressed angle-stable locking for tibiotalocalcaneal arthrodesis with retrograde intramedullary nails. Biomechanical evaluation.
    Mückley T; Hoffmeier K; Klos K; Petrovitch A; von Oldenburg G; Hofmann GO
    J Bone Joint Surg Am; 2008 Mar; 90(3):620-7. PubMed ID: 18310713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sliding of the load carrier in third-generation intramedullary nails for proximal femur fractures: an in vitro mechanical comparison study.
    Konstantinidis L; Grünewald H; Hauschild O; Schröter S; Hirschmüller A; Südkamp NP; Helwig P
    Proc Inst Mech Eng H; 2015 Feb; 229(2):110-4. PubMed ID: 25617021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary stability of an intramedullary calcaneal nail and an angular stable calcaneal plate in a biomechanical testing model of intraarticular calcaneal fracture.
    Goldzak M; Simon P; Mittlmeier T; Chaussemier M; Chiergatti R
    Injury; 2014 Jan; 45 Suppl 1():S49-53. PubMed ID: 24219899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramedullary nails with two lag screws.
    Brown CJ; Wang CJ; Yettram AL; Procter P
    Clin Biomech (Bristol, Avon); 2004 Jun; 19(5):519-25. PubMed ID: 15182988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helical blade versus sliding hip screw for treatment of unstable intertrochanteric hip fractures: a biomechanical evaluation.
    Strauss E; Frank J; Lee J; Kummer FJ; Tejwani N
    Injury; 2006 Oct; 37(10):984-9. PubMed ID: 16934256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress analysis of the distal locking screws for femoral interlocking nailing.
    Lin J; Lin SJ; Chen PQ; Yang SH
    J Orthop Res; 2001 Jan; 19(1):57-63. PubMed ID: 11332621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internal fixation of type-C distal femoral fractures in osteoporotic bone.
    Wähnert D; Hoffmeier KL; von Oldenburg G; Fröber R; Hofmann GO; Mückley T
    J Bone Joint Surg Am; 2010 Jun; 92(6):1442-52. PubMed ID: 20516320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture strain and stability with additional locking screws in intramedullary nailing: a biomechanical study.
    Sayana MK; Davis BJ; Kapoor B; Rahmatalla A; Maffulli N
    J Trauma; 2006 May; 60(5):1053-7. PubMed ID: 16688070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.