These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 942800)

  • 1. Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction.
    Shaywitz BA; Yager RD; Klopper JH
    Science; 1976 Jan; 191(4224):305-8. PubMed ID: 942800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paradoxical response to amphetamine in developing rats treated with 6-hydroxydopamine.
    Shaywitz BA; Klopper JH; Yager RD; Gordon JW
    Nature; 1976 May; 261(5556):153-5. PubMed ID: 944861
    [No Abstract]   [Full Text] [Related]  

  • 3. Intraventricular 6-hydroxydopamine in the newborn rat and locomotor responses to drugs in infancy: no support for the dopamine depletion model of minimal brain dysfunction.
    Pappas BA; Gallivan JV; Dugas T; Saari M; Ings R
    Psychopharmacology (Berl); 1980; 70(1):41-6. PubMed ID: 6775333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some speculations concerning a possible biochemical basis of minimal brain dysfunction.
    Wender PH
    Ann N Y Acad Sci; 1973 Feb; 205():18-28. PubMed ID: 4570233
    [No Abstract]   [Full Text] [Related]  

  • 5. Methylphenidate in 6-hydroxydopamine-treated developing rat pups. Effects on activity and maze performance.
    Shaywitz BA; Klopper JH; Gordon JW
    Arch Neurol; 1978 Jul; 35(7):463-9. PubMed ID: 566540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal brain dysfunction:dopamine depletion?
    Science; 1976 Oct; 194(4263):450-3. PubMed ID: 988636
    [No Abstract]   [Full Text] [Related]  

  • 7. Differential effects of selective dopamine, norepinephrine or catecholamine depletion on activity and learning in the developing rat.
    Raskin LA; Shaywitz BA; Anderson GM; Cohen DJ; Teicher MH; Linakis J
    Pharmacol Biochem Behav; 1983 Nov; 19(5):743-9. PubMed ID: 6647508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of the young dopamine-lesioned rat as an animal model for minimal brain dysfunction (MBD).
    Thieme RE; Dijkstra H; Stoof JC
    Psychopharmacology (Berl); 1980 Feb; 67(2):165-9. PubMed ID: 6768092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How amphetamine acts in minimal brain dysfunction.
    Snyder SH; Meyerhoff JL
    Ann N Y Acad Sci; 1973 Feb; 205():310-20. PubMed ID: 4570236
    [No Abstract]   [Full Text] [Related]  

  • 10. The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder.
    Avale ME; Falzone TL; Gelman DM; Low MJ; Grandy DK; Rubinstein M
    Mol Psychiatry; 2004 Jul; 9(7):718-26. PubMed ID: 14699433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gilles de la Tourette's disease and minimal brain dysfunction: amphetamine isomers reveal catecholamine correlates in an affected patient.
    Meyerhoff JL; Snyder SH
    Psychopharmacologia; 1973; 29(3):211-20. PubMed ID: 4512896
    [No Abstract]   [Full Text] [Related]  

  • 12. Magnitude and duration of hyperactivity following neonatal 6-hydroxydopamine is related to the extent of brain dopamine depletion.
    Miller FE; Heffner TG; Kotake C; Seiden LS
    Brain Res; 1981 Dec; 229(1):123-32. PubMed ID: 6796194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central catecholamine and peripheral noradrenaline depletion by 6-hydroxydopamine and active avoidance learning in rats.
    Oei TP; King MG
    J Comp Physiol Psychol; 1978 Feb; 92(1):94-108. PubMed ID: 627641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Animal models related to developmental disorders: theoretical and pharmacological analyses.
    Mailman RB; Lewis MH; Kilts CD
    Appl Res Ment Retard; 1981; 2(1):1-12. PubMed ID: 6171193
    [No Abstract]   [Full Text] [Related]  

  • 15. Dopamine receptors in a rat model of minimal brain dysfunction.
    Eisenberg J; Brecher-Fride E; Weizman R; Ebstein RP; Belmaker RH
    Neuropsychobiology; 1982; 8(3):151-5. PubMed ID: 6804884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased fixed-ratio performance and differential d- and l-amphetamine action following norepinephrine depletion by intraventricular 6-hydroxydopamine.
    Peterson DW; Sparber SB
    J Pharmacol Exp Ther; 1974 Dec; 191(3):349-57. PubMed ID: 4427285
    [No Abstract]   [Full Text] [Related]  

  • 17. The development of response to continuous auditory stimulation in rats treated neonatally with 6-hydroxydopamine.
    Brackbill Y; Douthitt TC
    Dev Psychobiol; 1976 Jan; 9(1):5-15. PubMed ID: 1254106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphetamine reduction of motor activity in rats after neonatal administration of 6-hydroxydopamine.
    Sorenson CA; Vayer JS; Goldberg CS
    Biol Psychiatry; 1977 Feb; 12(1):133-7. PubMed ID: 836921
    [No Abstract]   [Full Text] [Related]  

  • 19. Blockage of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine.
    Creese I; Iversen SD
    Brain Res; 1973 Jun; 55(2):369-82. PubMed ID: 4145950
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of dopamine D4 receptor-selective antagonists on motor hyperactivity in rats with neonatal 6-hydroxydopamine lesions.
    Zhang K; Davids E; Tarazi FI; Baldessarini RJ
    Psychopharmacology (Berl); 2002 Apr; 161(1):100-6. PubMed ID: 11967637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.