BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9428133)

  • 1. A novel method to measure acoustic speed of bone tissue.
    Chen T; Tzeng JS; Lin CJ
    Ultrasound Med Biol; 1997; 23(9):1337-41. PubMed ID: 9428133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for the measurement of acoustic speed.
    Kuo IY; Hete B; Shung KK
    J Acoust Soc Am; 1990 Oct; 88(4):1679-82. PubMed ID: 2262625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of measuring acoustic streaming for improved diagnosis of rhinosinusitis.
    Jönsson P; Sahlstrand-Johnson P; Holmer NG; Persson HW; Jannert M; Jansson T
    Ultrasound Med Biol; 2008 Feb; 34(2):228-38. PubMed ID: 17964066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of overlying soft tissues on trabecular bone acoustic measurement at various ultrasound frequencies.
    Riekkinen O; Hakulinen MA; Timonen M; Töyräs J; Jurvelin JS
    Ultrasound Med Biol; 2006 Jul; 32(7):1073-83. PubMed ID: 16829321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia.
    Lee KI; Yoon SW
    J Acoust Soc Am; 2004 Jun; 115(6):3210-7. PubMed ID: 15237845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion characteristics of the flexural wave assessed using low frequency (50-150kHz) point-contact transducers: A feasibility study on bone-mimicking phantoms.
    Kassou K; Remram Y; Laugier P; Minonzio JG
    Ultrasonics; 2017 Nov; 81():1-9. PubMed ID: 28570855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous ultrasound measurement of articular cartilage and subchondral bone.
    Aula AS; Töyräs J; Tiitu V; Jurvelin JS
    Osteoarthritis Cartilage; 2010 Dec; 18(12):1570-6. PubMed ID: 20950692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies.
    Nguyen KC; Le LH; Tran TN; Sacchi MD; Lou EH
    Ultrasonics; 2014 Jul; 54(5):1178-85. PubMed ID: 24074751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed vibro-acoustic method for assessment of osteoporosis & osteopenia: A feasibility study on human subjects.
    Ghavami S; Denis M; Gregory A; Webb J; Bayat M; Kumar V; Fatemi M; Alizad A
    J Mech Behav Biomed Mater; 2019 Sep; 97():187-197. PubMed ID: 31125891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound velocity measurement in long bones: measurement method and simulation of ultrasound wave propagation.
    Lowet G; Van der Perre G
    J Biomech; 1996 Oct; 29(10):1255-62. PubMed ID: 8884471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new ultrasonic method for fluid property measurements.
    Dymling SO; Persson HW; Hertz TG; Lindström K
    Ultrasound Med Biol; 1991; 17(5):497-500. PubMed ID: 1962351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guided wave phase velocity measurement using multi-emitter and multi-receiver arrays in the axial transmission configuration.
    Minonzio JG; Talmant M; Laugier P
    J Acoust Soc Am; 2010 May; 127(5):2913-9. PubMed ID: 21117742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo and in vitro measurement of ultrasound velocity in cortical bone.
    Lowet G; van der Perre G
    Stud Health Technol Inform; 1997; 40():201-20. PubMed ID: 10168879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization.
    Baron C; Naili S
    J Acoust Soc Am; 2010 Mar; 127(3):1307-17. PubMed ID: 20329830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot's theory.
    Williams JL
    J Acoust Soc Am; 1992 Feb; 91(2):1106-12. PubMed ID: 1556311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound speed in equine cortical bone: effects of orientation, density, porosity and temperature.
    McCarthy RN; Jeffcott LB; McCartney RN
    J Biomech; 1990; 23(11):1139-43. PubMed ID: 2277048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kramers-Kronig analysis of attenuation and dispersion in trabecular bone.
    Waters KR; Hoffmeister BK
    J Acoust Soc Am; 2005 Dec; 118(6):3912-20. PubMed ID: 16419833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound Speed of Sound Measurements in Trabecular Bone Using the Echographic Response of a Metallic Pin.
    Guipieri S; Nagatani Y; Bosc R; Nguyen VH; Chappard C; Geiger D; Haïat G
    Ultrasound Med Biol; 2015 Nov; 41(11):2966-76. PubMed ID: 26320667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of biomedical applications of acoustic radiation force.
    Sarvazyan A
    Ultrasonics; 2010 Feb; 50(2):230-4. PubMed ID: 19880152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.