BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9428138)

  • 21. Assessment of pixel shift in ultrasound images due to local temperature changes during the laser interstitial thermotherapy of liver: in vitro study.
    Mokhtari-Dizaji M; Gorjiara T; Ghanaati H
    Ultrasound Med Biol; 2007 Jun; 33(6):934-40. PubMed ID: 17466443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal properties and changes of acoustic parameters in an egg white phantom during heating and coagulation by high intensity focused ultrasound.
    Divkovic GW; Liebler M; Braun K; Dreyer T; Huber PE; Jenne JW
    Ultrasound Med Biol; 2007 Jun; 33(6):981-6. PubMed ID: 17434665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-frequency backscatter and attenuation measurements of selected bovine tissues between 10 and 30 MHz.
    Maruvada S; Shung KK; Wang SH
    Ultrasound Med Biol; 2000 Jul; 26(6):1043-9. PubMed ID: 10996704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonic attenuation and absorption in liver tissue.
    Parker KJ
    Ultrasound Med Biol; 1983; 9(4):363-9. PubMed ID: 6649154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inter-platform reproducibility of ultrasonic attenuation and backscatter coefficients in assessing NAFLD.
    Han A; Zhang YN; Boehringer AS; Andre MP; Erdman JW; Loomba R; Sirlin CB; O'Brien WD
    Eur Radiol; 2019 Sep; 29(9):4699-4708. PubMed ID: 30783789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasound monitoring of temperature change in liver tissue during laser thermotherapy: 10 degrees C intervals.
    Mokhtari-Dizaji M; Gorji-Ara T; Ghanaeati H; Kalbasi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2130-3. PubMed ID: 18002409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature dependence of ultrasonic propagation speed and attenuation in canine tissue.
    Techavipoo U; Varghese T; Zagzebski JA; Stiles T; Frank G
    Ultrason Imaging; 2002 Oct; 24(4):246-60. PubMed ID: 12665240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustic backscattering from ultrasonically tissuelike media.
    Insana MF; Zagzebski JA; Madsen EL
    Med Phys; 1982; 9(6):848-55. PubMed ID: 7162471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz.
    Il Lee K; Joo Choi M
    J Acoust Soc Am; 2012 Jan; 131(1):EL67-73. PubMed ID: 22280732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasound monitoring of in vitro radio frequency ablation by echo decorrelation imaging.
    Mast TD; Pucke DP; Subramanian SE; Bowlus WJ; Rudich SM; Buell JF
    J Ultrasound Med; 2008 Dec; 27(12):1685-97. PubMed ID: 19022994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasonic attenuation and backscatter from flowing whole blood are dependent on shear rate and hematocrit between 10 and 50 MHz.
    Huang CC; Chang YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):357-68. PubMed ID: 21342821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-dimensional acoustic attenuation mapping of high-temperature interstitial ultrasound lesions.
    Tyréus PD; Diederich C
    Phys Med Biol; 2004 Feb; 49(4):533-46. PubMed ID: 15005163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues.
    Maleke C; Konofagou EE
    Phys Med Biol; 2008 Mar; 53(6):1773-93. PubMed ID: 18367802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging.
    Viallon M; Terraz S; Roland J; Dumont E; Becker CD; Salomir R
    Med Phys; 2010 Apr; 37(4):1491-506. PubMed ID: 20443470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of the ultrasonic properties of vascular tissues and blood from 35-65 MHz.
    Lockwood GR; Ryan LK; Hunt JW; Foster FS
    Ultrasound Med Biol; 1991; 17(7):653-66. PubMed ID: 1781068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasound backscatter and attenuation in human liver with diffuse disease.
    Lu ZF; Zagzebski JA; Lee FT
    Ultrasound Med Biol; 1999 Sep; 25(7):1047-54. PubMed ID: 10574336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature dependence of thermal properties of ex vivo liver tissue up to ablative temperatures.
    Lopresto V; Argentieri A; Pinto R; Cavagnaro M
    Phys Med Biol; 2019 May; 64(10):105016. PubMed ID: 30952143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Backscatter coefficient imaging using a clinical scanner.
    Boote EJ; Zagzebski JA; Madsen EL
    Med Phys; 1992; 19(5):1145-52. PubMed ID: 1435591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.