These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9428154)

  • 1. Nutritional factors that affect the production of cholesterol oxidase by Rhodococcus equi no. 23.
    Lee MT; Chen WC; Chou CC
    Biotechnol Appl Biochem; 1997 Dec; 26(3):159-62. PubMed ID: 9428154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximization of cholesterol oxidase production by Rhodococcus equi no. 23 By using response surface methodology.
    Lee MT; Chen WC; Chou CC
    Biotechnol Appl Biochem; 1998 Dec; 28 ( Pt 3)():229-33. PubMed ID: 9799721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of cholesterol oxidase by Rhodococcus equi No. 23 in a jar fermenter.
    Chou CC; Lee MT; Chen WC
    Biotechnol Appl Biochem; 1999 Jun; 29(3):217-21. PubMed ID: 10334951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol side-chain cleavage by immobilized cells of Rhodococcus equi DSM 89-133.
    Ahmad S; Roy PK; Basu SK; Johri BN
    Indian J Exp Biol; 1993 Apr; 31(4):319-22. PubMed ID: 8359831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and production of cholesterol oxidase by alginate-immobilized cells of Rhodococcus equi No. 23.
    Chang YC; Chou CC
    Biotechnol Appl Biochem; 2002 Apr; 35(2):69-74. PubMed ID: 11916448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol oxidase and resistance of Rhodococcus equi to peroxidative stress in vitro in the presence of cholesterol.
    Fuhrmann H; Dobeleit G; Bellair S; Gück T
    J Vet Med B Infect Dis Vet Public Health; 2002 Aug; 49(6):310-1. PubMed ID: 12241035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol oxidase from Rhodococcus equi is likely the major factor involved in the cooperative lytic process (CAMP reaction) with Listeria monocytogenes.
    Fernánández-Garayzábal JF; Delgado C; Blanco MM; Suárez G; Domínguez L
    Lett Appl Microbiol; 1996 Mar; 22(3):249-52. PubMed ID: 8852354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of production of cholesterol oxidases in three Rhodococcus strains.
    Aihara H; Watanabe K; Nakamura R
    J Appl Bacteriol; 1986 Oct; 61(4):269-74. PubMed ID: 3465718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of macrophage membrane cholesterol by intracellular Rhodococcus equi.
    Linder R; Bernheimer AW
    Vet Microbiol; 1997 Jun; 56(3-4):269-76. PubMed ID: 9226841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of submerged-culture conditions for mycelial growth and exo-biopolymer production by Auricularia polytricha (wood ears fungus) using the methods of uniform design and regression analysis.
    Xu CP; Yun JW
    Biotechnol Appl Biochem; 2003 Oct; 38(Pt 2):193-9. PubMed ID: 12793860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and properties of cholesterol oxidase and choline phosphohydrolase from Rhodococcus equi.
    Machang'u RS; Prescott JF
    Can J Vet Res; 1991 Oct; 55(4):332-40. PubMed ID: 1790488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodococcus erythropolis ATCC 25544 as a suitable source of cholesterol oxidase: cell-linked and extracellular enzyme synthesis, purification and concentration.
    Sojo MM; Bru RR; García-Carmona FF
    BMC Biotechnol; 2002 Mar; 2():3. PubMed ID: 11914155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol oxidase (ChoE) is not important in the virulence of Rhodococcus equi.
    Pei Y; Dupont C; Sydor T; Haas A; Prescott JF
    Vet Microbiol; 2006 Dec; 118(3-4):240-6. PubMed ID: 16979852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medium optimization by orthogonal array and response surface methodology for cholesterol oxidase production by Streptomyces lavendulae NCIM 2499.
    Chauhan AK; Survase SA; Kishenkumar J; Annapure US
    J Gen Appl Microbiol; 2009 Jun; 55(3):171-80. PubMed ID: 19590144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574.
    Mutalik SR; Vaidya BK; Joshi RM; Desai KM; Nene SN
    Bioresour Technol; 2008 Nov; 99(16):7875-80. PubMed ID: 18511269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterisation of the extracellular cholesterol oxidase enzyme from Enterococcus hirae.
    Yehia HM; Hassanein WA; Ibraheim SM
    BMC Microbiol; 2015 Sep; 15():178. PubMed ID: 26369334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101.
    Vidyasagar M; Prakash SB; Sreeramulu K
    Lett Appl Microbiol; 2006 Oct; 43(4):385-91. PubMed ID: 16965368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol to cholestenone oxidation by ChoG, the main extracellular cholesterol oxidase of Rhodococcus ruber strain Chol-4.
    Fernández de Las Heras L; Perera J; Navarro Llorens JM
    J Steroid Biochem Mol Biol; 2014 Jan; 139():33-44. PubMed ID: 24125733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid and 1,4-androstadiene-3,17-dione.
    Yeh CH; Kuo YS; Chang CM; Liu WH; Sheu ML; Meng M
    Microb Cell Fact; 2014 Sep; 13():130. PubMed ID: 25201011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of alkaline cholesterol oxidase purified from Rhodococcus sp. PKPD-CL for its halo tolerance, detergent and organic solvent stability.
    Kasabe PJ; Mali GT; Dandge PB
    Protein Expr Purif; 2015 Dec; 116():30-41. PubMed ID: 26276474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.