These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 942823)
21. The effect of respiratory frequency on pulmonary function during artificial ventilation. A review. Hedenstierna G Acta Anaesthesiol Scand; 1976; 20(1):20-31. PubMed ID: 773076 [TBL] [Abstract][Full Text] [Related]
22. Inspiratory work with and without continuous positive airway pressure in patients with acute respiratory failure. Katz JA; Marks JD Anesthesiology; 1985 Dec; 63(6):598-607. PubMed ID: 3904528 [TBL] [Abstract][Full Text] [Related]
23. Influence of the end inspiratory pause on respiratory mechanics and tidal gas distribution of surgical patients ventilated under a tailored open lung approach strategy: A randomised, crossover trial. López-Herrera D; De La Matta M Anaesth Crit Care Pain Med; 2022 Apr; 41(2):101038. PubMed ID: 35183806 [TBL] [Abstract][Full Text] [Related]
24. An appropriate inspiratory flow pattern can enhance CO2 exchange, facilitating protective ventilation of healthy lungs. Sturesson LW; Malmkvist G; Allvin S; Collryd M; Bodelsson M; Jonson B Br J Anaesth; 2016 Aug; 117(2):243-9. PubMed ID: 27440637 [TBL] [Abstract][Full Text] [Related]
25. Tracheal gas insufflation augments CO2 clearance during mechanical ventilation. Ravenscraft SA; Burke WC; Nahum A; Adams AB; Nakos G; Marcy TW; Marini JJ Am Rev Respir Dis; 1993 Aug; 148(2):345-51. PubMed ID: 8342897 [TBL] [Abstract][Full Text] [Related]
26. Effects of inspiratory pause on CO2 elimination and arterial PCO2 in acute lung injury. Devaquet J; Jonson B; Niklason L; Si Larbi AG; Uttman L; Aboab J; Brochard L J Appl Physiol (1985); 2008 Dec; 105(6):1944-9. PubMed ID: 18801962 [TBL] [Abstract][Full Text] [Related]
27. Large tidal volume ventilation does not improve oxygenation in morbidly obese patients during anesthesia. Bardoczky GI; Yernault JC; Houben JJ; d'Hollander AA Anesth Analg; 1995 Aug; 81(2):385-8. PubMed ID: 7618732 [TBL] [Abstract][Full Text] [Related]
28. The effect of mode, inspiratory time, and positive end-expiratory pressure on partial liquid ventilation. Fujino Y; Kirmse M; Hess D; Kacmarek RM Am J Respir Crit Care Med; 1999 Apr; 159(4 Pt 1):1087-95. PubMed ID: 10194150 [TBL] [Abstract][Full Text] [Related]
29. Partial liquid ventilation versus conventional mechanical ventilation with high PEEP and moderate tidal volume in acute respiratory failure in piglets. Rödl S; Urlesberger B; Knez I; Dacar D; Zobel G Pediatr Res; 2002 Aug; 52(2):225-32. PubMed ID: 12149500 [TBL] [Abstract][Full Text] [Related]
30. Predicting dead space ventilation in critically ill patients using clinically available data. Frankenfield DC; Alam S; Bekteshi E; Vender RL Crit Care Med; 2010 Jan; 38(1):288-91. PubMed ID: 19789453 [TBL] [Abstract][Full Text] [Related]
31. Effects of assisted ventilation on the work of breathing: volume-controlled versus pressure-controlled ventilation. Cinnella G; Conti G; Lofaso F; Lorino H; Harf A; Lemaire F; Brochard L Am J Respir Crit Care Med; 1996 Mar; 153(3):1025-33. PubMed ID: 8630541 [TBL] [Abstract][Full Text] [Related]
32. Influence of an end inspiratory pause on pulmonary ventilation, gas distribution, and lung perfusion during artificial ventilation. Lindahl S Crit Care Med; 1979 Dec; 7(12):540-6. PubMed ID: 509966 [TBL] [Abstract][Full Text] [Related]
33. Effects of inspiratory flow waveforms on lung mechanics, gas exchange, and respiratory metabolism in COPD patients during mechanical ventilation. Yang SC; Yang SP Chest; 2002 Dec; 122(6):2096-104. PubMed ID: 12475853 [TBL] [Abstract][Full Text] [Related]
34. The effect of artificial ventilation on functional residual capacity and arterial oxygenation. II. Comparison of spontaneous respiration and artificial ventilation at similar arterial carbon dioxide tensions, tidal volumes and inspiratory gas flow rates. Arthur DS; Mathur AK; Nisbet HI; Volgyesi GA Can Anaesth Soc J; 1975 Jul; 22(4):432-5. PubMed ID: 237611 [TBL] [Abstract][Full Text] [Related]
35. Aspiration of airway dead space. A new method to enhance CO2 elimination. De Robertis E; Sigurdsson SE; Drefeldt B; Jonson B Am J Respir Crit Care Med; 1999 Mar; 159(3):728-32. PubMed ID: 10051243 [TBL] [Abstract][Full Text] [Related]
36. Expiratory time constant for determinations of plateau pressure, respiratory system compliance, and total resistance. Al-Rawas N; Banner MJ; Euliano NR; Tams CG; Brown J; Martin AD; Gabrielli A Crit Care; 2013 Feb; 17(1):R23. PubMed ID: 23384402 [TBL] [Abstract][Full Text] [Related]
37. A simple automated method for measuring pressure-volume curves during mechanical ventilation. Lu Q; Vieira SR; Richecoeur J; Puybasset L; Kalfon P; Coriat P; Rouby JJ Am J Respir Crit Care Med; 1999 Jan; 159(1):275-82. PubMed ID: 9872850 [TBL] [Abstract][Full Text] [Related]
38. Relationship between physiologic deadspace/tidal volume ratio and gas exchange in infants with acute bronchiolitis on invasive mechanical ventilation. Almeida-Junior AA; da Silva MT; Almeida CC; Ribeiro JD Pediatr Crit Care Med; 2007 Jul; 8(4):372-7. PubMed ID: 17545938 [TBL] [Abstract][Full Text] [Related]
39. [Respiratory function monitoring in a child on mechanical respiratory ventilation. 2: compliance, resistance, dynamic hyperinflation, pulmonary dead-space, work of breathing]. López-Herce Cid J An Pediatr (Barc); 2003 Sep; 59(3):278-85. PubMed ID: 14598802 [TBL] [Abstract][Full Text] [Related]
40. Effects of sustained inflation and postinflation positive end-expiratory pressure in acute respiratory distress syndrome: focusing on pulmonary and extrapulmonary forms. Tugrul S; Akinci O; Ozcan PE; Ince S; Esen F; Telci L; Akpir K; Cakar N Crit Care Med; 2003 Mar; 31(3):738-44. PubMed ID: 12626977 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]