These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 9428517)

  • 1. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits.
    Levchenko I; Smith CK; Walsh NP; Sauer RT; Baker TA
    Cell; 1997 Dec; 91(7):939-47. PubMed ID: 9428517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular chaperones: clamps for the Clps?
    Feng HP; Gierasch LM
    Curr Biol; 1998 Jun; 8(13):R464-7. PubMed ID: 9651675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains.
    Smith CK; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6678-82. PubMed ID: 10359771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone.
    Wawrzynow A; Wojtkowiak D; Marszalek J; Banecki B; Jonsen M; Graves B; Georgopoulos C; Zylicz M
    EMBO J; 1995 May; 14(9):1867-77. PubMed ID: 7743994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine.
    Kim YI; Burton RE; Burton BM; Sauer RT; Baker TA
    Mol Cell; 2000 Apr; 5(4):639-48. PubMed ID: 10882100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    OsterĂ¥s M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and characterization of a mouse homolog of bacterial ClpX, a novel mammalian class II member of the Hsp100/Clp chaperone family.
    Santagata S; Bhattacharyya D; Wang FH; Singha N; Hodtsev A; Spanopoulou E
    J Biol Chem; 1999 Jun; 274(23):16311-9. PubMed ID: 10347188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Bacterial ClpX protease structure and function--a review].
    Wang L; Xie J
    Wei Sheng Wu Xue Bao; 2010 Oct; 50(10):1281-7. PubMed ID: 21141460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disassembly of the Mu transposase tetramer by the ClpX chaperone.
    Levchenko I; Luo L; Baker TA
    Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crowbars and ratchets: hsp100 chaperones as tools in reversing protein aggregation.
    Glover JR; Tkach JM
    Biochem Cell Biol; 2001; 79(5):557-68. PubMed ID: 11716297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease.
    Halperin T; Zheng B; Itzhaki H; Clarke AK; Adam Z
    Plant Mol Biol; 2001 Mar; 45(4):461-8. PubMed ID: 11352464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function analysis of the zinc-binding region of the Clpx molecular chaperone.
    Banecki B; Wawrzynow A; Puzewicz J; Georgopoulos C; Zylicz M
    J Biol Chem; 2001 Jun; 276(22):18843-8. PubMed ID: 11278349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Here's the hook: similar substrate binding sites in the chaperone domains of Clp and Lon.
    Wickner S; Maurizi MR
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8318-20. PubMed ID: 10411867
    [No Abstract]   [Full Text] [Related]  

  • 17. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP.
    Grimaud R; Kessel M; Beuron F; Steven AC; Maurizi MR
    J Biol Chem; 1998 May; 273(20):12476-81. PubMed ID: 9575205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus.
    Schelin J; Lindmark F; Clarke AK
    Microbiology (Reading); 2002 Jul; 148(Pt 7):2255-2265. PubMed ID: 12101312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of ClpX molecular chaperone from Helicobacter pylori.
    Kim DY; Kim KK
    J Biol Chem; 2003 Dec; 278(50):50664-70. PubMed ID: 14514695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species.
    Chowdhury T; Chien P; Ebrahim S; Sauer RT; Baker TA
    Protein Sci; 2010 Feb; 19(2):242-54. PubMed ID: 20014030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.