BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9428649)

  • 1. Cooperativity of phosphatidylinositol transfer protein and phospholipase D in secretory vesicle formation from the TGN--phosphoinositides as a common denominator?
    Tüscher O; Lorra C; Bouma B; Wirtz KW; Huttner WB
    FEBS Lett; 1997 Dec; 419(2-3):271-5. PubMed ID: 9428649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of permeabilized cells to investigate secretory granule biogenesis.
    Ling WL; Siddhanta A; Shields D
    Methods; 1998 Oct; 16(2):141-9. PubMed ID: 9790860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phosphatidylinositol 3-kinase and phosphatidylinositol transfer protein act synergistically in formation of constitutive transport vesicles from the trans-Golgi network.
    Jones SM; Alb JG; Phillips SE; Bankaitis VA; Howell KE
    J Biol Chem; 1998 Apr; 273(17):10349-54. PubMed ID: 9553090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for phosphatidylinositol transfer protein in secretory vesicle formation.
    Ohashi M; Jan de Vries K; Frank R; Snoek G; Bankaitis V; Wirtz K; Huttner WB
    Nature; 1995 Oct; 377(6549):544-7. PubMed ID: 7566155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network.
    Chen YG; Siddhanta A; Austin CD; Hammond SM; Sung TC; Frohman MA; Morris AJ; Shields D
    J Cell Biol; 1997 Aug; 138(3):495-504. PubMed ID: 9245781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a novel family of nonclassic yeast phosphatidylinositol transfer proteins whose function modulates phospholipase D activity and Sec14p-independent cell growth.
    Li X; Routt SM; Xie Z; Cui X; Fang M; Kearns MA; Bard M; Kirsch DR; Bankaitis VA
    Mol Biol Cell; 2000 Jun; 11(6):1989-2005. PubMed ID: 10848624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylinositol transfer proteins: a requirement in signal transduction and vesicle traffic.
    Cockcroft S
    Bioessays; 1998 May; 20(5):423-32. PubMed ID: 9670815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An essential role for the phosphatidylinositol transfer protein in the scission of coatomer-coated vesicles from the trans-Golgi network.
    Simon JP; Morimoto T; Bankaitis VA; Gottlieb TA; Ivanov IE; Adesnik M; Sabatini DD
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11181-6. PubMed ID: 9736710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal transduction and membrane traffic: the PITP/phosphoinositide connection.
    Liscovitch M; Cantley LC
    Cell; 1995 Jun; 81(5):659-62. PubMed ID: 7774006
    [No Abstract]   [Full Text] [Related]  

  • 10. Mammalian phosphatidylinositol transfer proteins: emerging roles in signal transduction and vesicular traffic.
    Cockcroft S
    Chem Phys Lipids; 1999 Apr; 98(1-2):23-33. PubMed ID: 10358925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secretory vesicle budding from the trans-Golgi network is mediated by phosphatidic acid levels.
    Siddhanta A; Shields D
    J Biol Chem; 1998 Jul; 273(29):17995-8. PubMed ID: 9660750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane metabolism mediated by Sec14 family members influences Arf GTPase activating protein activity for transport from the trans-Golgi.
    Wong TA; Fairn GD; Poon PP; Shmulevitz M; McMaster CR; Singer RA; Johnston GC
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12777-82. PubMed ID: 16126894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipase D activity is required for suppression of yeast phosphatidylinositol transfer protein defects.
    Xie Z; Fang M; Rivas MP; Faulkner AJ; Sternweis PC; Engebrecht JA; Bankaitis VA
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12346-51. PubMed ID: 9770489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of phosphoinositides and of Spo14p (phospholipase D)-generated phosphatidic acid during yeast sporulation.
    Rudge SA; Sciorra VA; Iwamoto M; Zhou C; Strahl T; Morris AJ; Thorner J; Engebrecht J
    Mol Biol Cell; 2004 Jan; 15(1):207-18. PubMed ID: 14528019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brefeldin A inhibits the formation of constitutive secretory vesicles and immature secretory granules from the trans-Golgi network.
    Rosa P; Barr FA; Stinchcombe JC; Binacchi C; Huttner WB
    Eur J Cell Biol; 1992 Dec; 59(2):265-74. PubMed ID: 1493791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatidylinositol transfer proteins: requirements in phospholipase C signaling and in regulated exocytosis.
    Cockcroft S
    FEBS Lett; 1997 Jun; 410(1):44-8. PubMed ID: 9247120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first 5 amino acids of the carboxyl terminus of phosphatidylinositol transfer protein (PITP) alpha play a critical role in inositol lipid signaling. Transfer activity of PITP is essential but not sufficient for restoration of phospholipase C signaling.
    Hara S; Swigart P; Jones D; Cockcroft S
    J Biol Chem; 1997 Jun; 272(23):14908-13. PubMed ID: 9169461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro generation from the trans-Golgi network of coatomer-coated vesicles containing sialylated vesicular stomatitis virus-G protein.
    Simon JP; Ivanov IE; Adesnik M; Sabatini DD
    Methods; 2000 Apr; 20(4):437-54. PubMed ID: 10720465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prohormone processing in the trans-Golgi network: endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells.
    Xu H; Shields D
    J Cell Biol; 1993 Sep; 122(6):1169-84. PubMed ID: 8104189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of formation of post Golgi vesicles from TGN membranes: Arf-dependent coat assembly and PKC-regulated vesicle scission.
    Sabatini DD; Adesnik M; Ivanov IE; Simon JP
    Biocell; 1996 Dec; 20(3):287-300. PubMed ID: 9031596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.