These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9429091)

  • 1. A novel fiber-optic pH sensor incorporating carboxy SNAFL-2 and fluorescent wavelength-ratiometric detection.
    Xu Z; Rollins A; Alcala R; Marchant RE
    J Biomed Mater Res; 1998 Jan; 39(1):9-15. PubMed ID: 9429091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: metal-enhanced fluorescence sensing.
    Aslan K; Lakowicz JR; Szmacinski H; Geddes CD
    J Fluoresc; 2005 Jan; 15(1):37-40. PubMed ID: 15711875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring: development and application.
    Kermis HR; Kostov Y; Harms P; Rao G
    Biotechnol Prog; 2002; 18(5):1047-53. PubMed ID: 12363356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence ratiometric pH sensor prepared from covalently immobilized porphyrin and benzothioxanthene.
    Niu CG; Gui XQ; Zeng GM; Guan AL; Gao PF; Qin PZ
    Anal Bioanal Chem; 2005 Sep; 383(2):349-57. PubMed ID: 16132123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence spectroscopy of pH in vivo using a dual-emission fluorophore (C-SNAFL-1).
    Mordon S; Devoisselle JM; Soulié S
    J Photochem Photobiol B; 1995 Apr; 28(1):19-23. PubMed ID: 7791002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CdSe/ZnS quantum dots conjugated with a fluorescein derivative: a FRET-based pH sensor for physiological alkaline conditions.
    Kurabayashi T; Funaki N; Fukuda T; Akiyama S; Suzuki M
    Anal Sci; 2014; 30(5):545-50. PubMed ID: 24813952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and application of an excitation ratiometric optical pH sensor for bioprocess monitoring.
    Badugu R; Kostov Y; Rao G; Tolosa L
    Biotechnol Prog; 2008; 24(6):1393-401. PubMed ID: 19194954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient core-shell fluorescent silica nanoprobe for ratiometric fluorescence detection of pH in living cells.
    Fu J; Ding C; Zhu A; Tian Y
    Analyst; 2016 Aug; 141(15):4766-71. PubMed ID: 27291898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low cytotoxic and ratiometric fluorescent nanosensor based on carbon-dots for intracellular pH sensing and mapping.
    Du F; Ming Y; Zeng F; Yu C; Wu S
    Nanotechnology; 2013 Sep; 24(36):365101. PubMed ID: 23942146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fibre-optic calcium ion sensor using a calcein derivative.
    Sloan WD; Uttamlal M
    Luminescence; 2001; 16(2):179-86. PubMed ID: 11312545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing.
    Ke G; Zhu Z; Wang W; Zou Y; Guan Z; Jia S; Zhang H; Wu X; Yang CJ
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15329-34. PubMed ID: 25111767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence lifetime spectroscopy of a pH-sensitive dye encapsulated in hydrogel beads.
    Kuwana E; Liang F; Sevick-Muraca EM
    Biotechnol Prog; 2004; 20(5):1561-6. PubMed ID: 15458344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous recording of intramitochondrial pH with fluorescent pH indicators: novel probes and limitations of the method.
    Zółkiewska A; Czyz A; Duszyński J; Wojtczak L
    Acta Biochim Pol; 1993; 40(2):241-50. PubMed ID: 8212962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a new fluorescent probe, seminaphthofluorescein-calcein, for determination of intracellular pH by simultaneous dual-emission imaging laser scanning confocal microscopy.
    Zhou Y; Marcus EM; Haugland RP; Opas M
    J Cell Physiol; 1995 Jul; 164(1):9-16. PubMed ID: 7790401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast temporal response fiber-optic chemical sensors based on the photodeposition of micrometer-scale polymer arrays.
    Healey BG; Walt DR
    Anal Chem; 1997 Jun; 69(11):2213-6. PubMed ID: 9183184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles.
    Gao F; Tang L; Dai L; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):517-21. PubMed ID: 16965933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber-optic pH detection in small volumes of biosamples.
    Kasik I; Mrazek J; Martan T; Pospisilova M; Podrazky O; Matejec V; Hoyerova K; Kaminek M
    Anal Bioanal Chem; 2010 Nov; 398(5):1883-9. PubMed ID: 20835818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A ratiometric fluorescence sensor with broad dynamic range based on two pH-sensitive fluorophores.
    Niu CG; Gui XQ; Zeng GM; Yuan XZ
    Analyst; 2005 Nov; 130(11):1551-6. PubMed ID: 16222379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined imaging and chemical sensing of L-glutamate release from the foregut plexus of the lepidopteran, Manduca sexta.
    Issberner JP; Schauer CL; Trimmer BA; Walt DR
    J Neurosci Methods; 2002 Oct; 120(1):1-10. PubMed ID: 12351201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of probe binding and comparison of its influence on fluorescence lifetime of two pH-sensitive benzo[c]xanthene dyes using intensity-modulated multiple-wavelength scanning technique.
    Andersson RM; Carlsson K; Liljeborg A; Brismar H
    Anal Biochem; 2000 Jul; 283(1):104-10. PubMed ID: 10929815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.