These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 9429160)

  • 21. Calmidazolium alters Ca2+ regulation of tension redevelopment rate in skinned skeletal muscle.
    Regnier M; Martyn DA; Chase PB
    Biophys J; 1996 Nov; 71(5):2786-94. PubMed ID: 8913615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitric oxide impairs Ca2+ activation and slows cross-bridge cycling kinetics in skeletal muscle.
    Heunks LM; Cody MJ; Geiger PC; Dekhuijzen PN; Sieck GC
    J Appl Physiol (1985); 2001 Nov; 91(5):2233-9. PubMed ID: 11641366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. A steady-state and transient kinetic study.
    Millar NC; Homsher E
    J Biol Chem; 1990 Nov; 265(33):20234-40. PubMed ID: 2243087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pH modulation of the kinetics of a Ca2(+)-sensitive cross-bridge state transition in mammalian single skeletal muscle fibres.
    Metzger JM; Moss RL
    J Physiol; 1990 Sep; 428():751-64. PubMed ID: 2231432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres.
    McDonald KS; Wolff MR; Moss RL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Ca2+]i following extrasystoles in guinea-pig trabeculae microinjected with fluo-3 - a comparison with frog skeletal muscle fibres.
    Wohlfart B
    Acta Physiol Scand; 2000 May; 169(1):1-11. PubMed ID: 10759605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Force regulation by Ca2+ in skinned single cardiac myocytes of frog.
    Brandt PW; Colomo F; Piroddi N; Poggesi C; Tesi C
    Biophys J; 1998 Apr; 74(4):1994-2004. PubMed ID: 9545058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple model of cardiac muscle for multiscale simulation: Passive mechanics, crossbridge kinetics and calcium regulation.
    Syomin FA; Tsaturyan AK
    J Theor Biol; 2017 May; 420():105-116. PubMed ID: 28223172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-bridge movement and stiffness during the rise of tension in skeletal muscle--a theoretical analysis.
    Månsson A
    J Muscle Res Cell Motil; 2000 May; 21(4):383-403. PubMed ID: 11032349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Basal myosin light chain phosphorylation is a determinant of Ca2+ sensitivity of force and activation dependence of the kinetics of myocardial force development.
    Olsson MC; Patel JR; Fitzsimons DP; Walker JW; Moss RL
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2712-8. PubMed ID: 15331360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular effects of the myosin activator omecamtiv mecarbil on contractile properties of skinned myocardium lacking cardiac myosin binding protein-C.
    Mamidi R; Gresham KS; Li A; dos Remedios CG; Stelzer JE
    J Mol Cell Cardiol; 2015 Aug; 85():262-72. PubMed ID: 26100051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Ca2+ binding properties of troponin C on rate of skeletal muscle force redevelopment.
    Lee RS; Tikunova SB; Kline KP; Zot HG; Hasbun JE; Minh NV; Swartz DR; Rall JA; Davis JP
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1091-9. PubMed ID: 20702687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction.
    Brenner B
    Proc Natl Acad Sci U S A; 1988 May; 85(9):3265-9. PubMed ID: 2966401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mechanism of the force enhancement by MgADP under simulated ischaemic conditions in rat cardiac myocytes.
    Papp Z; Szabó A; Barends JP; Stienen GJ
    J Physiol; 2002 Aug; 543(Pt 1):177-89. PubMed ID: 12181290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction.
    Szczesna D; Zhao J; Jones M; Zhi G; Stull J; Potter JD
    J Appl Physiol (1985); 2002 Apr; 92(4):1661-70. PubMed ID: 11896035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic coupling of phosphate release, force generation and rate-limiting steps in the cross-bridge cycle.
    Stehle R; Tesi C
    J Muscle Res Cell Motil; 2017 Aug; 38(3-4):275-289. PubMed ID: 28918606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of pH on the Ca2+ affinity of the Ca2+ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibres.
    Parsons B; Szczesna D; Zhao J; Van Slooten G; Kerrick WG; Putkey JA; Potter JD
    J Muscle Res Cell Motil; 1997 Oct; 18(5):599-609. PubMed ID: 9350012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cross-bridge versus thin filament contributions to the level and rate of force development in cardiac muscle.
    Regnier M; Martin H; Barsotti RJ; Rivera AJ; Martyn DA; Clemmens E
    Biophys J; 2004 Sep; 87(3):1815-24. PubMed ID: 15345560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.