These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 9429287)

  • 1. PCR systems for Agrobacterium tumefaciens detection.
    Sachadyn P; Kur J
    Acta Microbiol Pol; 1997; 46(2):129-43. PubMed ID: 9429287
    [No Abstract]   [Full Text] [Related]  

  • 2. A new PCR system for Agrobacterium tumefaciens detection based on amplification of T-DNA fragment.
    Sachadyn P; Kur J
    Acta Microbiol Pol; 1997; 46(2):145-56. PubMed ID: 9429288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic assignment and mechanism of action of a crop growth promoting Rhizobium radiobacter strain used as a biofertiliser on graminaceous crops in Russia.
    Humphry DR; Andrews M; Santos SR; James EK; Vinogradova LV; Perin L; Reis VM; Cummings SP
    Antonie Van Leeuwenhoek; 2007 Feb; 91(2):105-13. PubMed ID: 17013548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The construction and use of a PCR internal control.
    Sachadyn P; Kur J
    Mol Cell Probes; 1998 Oct; 12(5):259-62. PubMed ID: 9778450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A T-DNA from the Agrobacterium tumefaciens limited-host-range strain AB2/73 contains a single oncogene.
    Otten L; Schmidt J
    Mol Plant Microbe Interact; 1998 May; 11(5):335-42. PubMed ID: 9574502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Agrobacterium tumefaciens-mediated transformation of Chaetomium globosum and its T-DNA insertional mutagenesis].
    Gao XX; Yang Q
    Wei Sheng Wu Xue Bao; 2005 Feb; 45(1):129-31. PubMed ID: 15847179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widespread distribution and high abundance of Rhizobium radiobacter within Mediterranean subsurface sediments.
    Süss J; Schubert K; Sass H; Cypionka H; Overmann J; Engelen B
    Environ Microbiol; 2006 Oct; 8(10):1753-63. PubMed ID: 16958756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration.
    Mysore KS; Bassuner B; Deng XB; Darbinian NS; Motchoulski A; Ream W; Gelvin SB
    Mol Plant Microbe Interact; 1998 Jul; 11(7):668-83. PubMed ID: 9650299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of a strain of Agrobacterium tumefaciens (Rhizobium radiobacter) utilizing methylene urea (ureaformaldehyde) as nitrogen source.
    Koivunen ME; Morisseau C; Horwath WR; Hammock BD
    Can J Microbiol; 2004 Mar; 50(3):167-74. PubMed ID: 15105883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T-DNA transfer from Agrobacterium tumefaciens to the ectomycorrhizal fungus Pisolithus microcarpus.
    Pardo AG; Kemppainen M; Valdemoros D; Duplessis S; Martin F; Tagu D
    Rev Argent Microbiol; 2005; 37(2):69-72. PubMed ID: 16178458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome structure of pTi-SAKURA (II): genetic map constructed by complete DNA sequencing.
    Suzuki K; Hattori Y; Uraji M; Ohta N; Katoh A; Yoshida K
    Nucleic Acids Symp Ser; 1997; (37):161-2. PubMed ID: 9586049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bacterial artificial chromosome library of Lotus japonicus constructed in an Agrobacterium tumefaciens-transformable vector.
    Men AE; Meksem K; Kassem MA; Lohar D; Stiller J; Lightfoot D; Gresshoff PM
    Mol Plant Microbe Interact; 2001 Mar; 14(3):422-5. PubMed ID: 11277441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome structure of pTi-SAKURA (I): strategy for DNA sequencing of a Japanese cherry-Ti plasmid.
    Hattori Y; Suzuki K; Uraji M; Ohta N; Katoh A; Yoshida K
    Nucleic Acids Symp Ser; 1997; (37):159-60. PubMed ID: 9586048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical assessment of Agrobacterium tumefaciens-mediated transformation as a tool for pathogenicity gene discovery in the phytopathogenic fungus Leptosphaeria maculans.
    Blaise F; Rémy E; Meyer M; Zhou L; Narcy JP; Roux J; Balesdent MH; Rouxel T
    Fungal Genet Biol; 2007 Feb; 44(2):123-38. PubMed ID: 16979359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agrobacterium-mediated transformation of Sclerotinia sclerotiorum.
    Weld RJ; Eady CC; Ridgway HJ
    J Microbiol Methods; 2006 Apr; 65(1):202-7. PubMed ID: 16107285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agrobacterium- tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leaf-blight fungus.
    Degefu Y; Hanif M
    Arch Microbiol; 2003 Oct; 180(4):279-84. PubMed ID: 12898134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular diagnostic procedures for production of pathogen-free propagation material.
    Manulis S; Chalupowicz L; Dror O; Kleitman F
    Pest Manag Sci; 2002 Nov; 58(11):1126-31. PubMed ID: 12449531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction.
    Ha Y; Fessehaie A; Ling KS; Wechter WP; Keinath AP; Walcott RR
    Phytopathology; 2009 Jun; 99(6):666-78. PubMed ID: 19453225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The presence and characterization of a virF gene on Agrobacterium vitis Ti plasmids.
    Schrammeijer B; Hemelaar J; Hooykaas PJ
    Mol Plant Microbe Interact; 1998 May; 11(5):429-33. PubMed ID: 9574510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial genomes. New genome a boost to plant studies.
    Pennisi E
    Science; 2001 Dec; 294(5550):2266. PubMed ID: 11743170
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.