These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9429288)

  • 1. A new PCR system for Agrobacterium tumefaciens detection based on amplification of T-DNA fragment.
    Sachadyn P; Kur J
    Acta Microbiol Pol; 1997; 46(2):145-56. PubMed ID: 9429288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens.
    Regensburg-Tuïnk AJ; Hooykaas PJ
    Nature; 1993 May; 363(6424):69-71. PubMed ID: 8479538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration.
    Mysore KS; Bassuner B; Deng XB; Darbinian NS; Motchoulski A; Ream W; Gelvin SB
    Mol Plant Microbe Interact; 1998 Jul; 11(7):668-83. PubMed ID: 9650299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A T-DNA from the Agrobacterium tumefaciens limited-host-range strain AB2/73 contains a single oncogene.
    Otten L; Schmidt J
    Mol Plant Microbe Interact; 1998 May; 11(5):335-42. PubMed ID: 9574502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The construction and use of a PCR internal control.
    Sachadyn P; Kur J
    Mol Cell Probes; 1998 Oct; 12(5):259-62. PubMed ID: 9778450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A second T-region of the soybean-supervirulent chrysopine-type Ti plasmid pTiChry5, and construction of a fully disarmed vir helper plasmid.
    Palanichelvam K; Oger P; Clough SJ; Cha C; Bent AF; Farrand SK
    Mol Plant Microbe Interact; 2000 Oct; 13(10):1081-91. PubMed ID: 11043469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCR systems for Agrobacterium tumefaciens detection.
    Sachadyn P; Kur J
    Acta Microbiol Pol; 1997; 46(2):129-43. PubMed ID: 9429287
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of a semi-nested PCR based method for sensitive detection of tumorigenic Agrobacterium in soil.
    Puławska J; Sobiczewski P
    J Appl Microbiol; 2005; 98(3):710-21. PubMed ID: 15715875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The presence and characterization of a virF gene on Agrobacterium vitis Ti plasmids.
    Schrammeijer B; Hemelaar J; Hooykaas PJ
    Mol Plant Microbe Interact; 1998 May; 11(5):429-33. PubMed ID: 9574510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome structure of pTi-SAKURA (I): strategy for DNA sequencing of a Japanese cherry-Ti plasmid.
    Hattori Y; Suzuki K; Uraji M; Ohta N; Katoh A; Yoshida K
    Nucleic Acids Symp Ser; 1997; (37):159-60. PubMed ID: 9586048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor induction by Agrobacterium tumefaciens: analysis of the boundaries of T-DNA.
    Zambryski P; Depicker A; Kruger K; Goodman HM
    J Mol Appl Genet; 1982; 1(4):361-70. PubMed ID: 7108407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel SCAR primers for specific and sensitive detection of Agrobacterium vitis strains.
    Lim SH; Kim JG; Kang HW
    Microbiol Res; 2009; 164(4):451-60. PubMed ID: 17467252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome structure of pTi-SAKURA (II): genetic map constructed by complete DNA sequencing.
    Suzuki K; Hattori Y; Uraji M; Ohta N; Katoh A; Yoshida K
    Nucleic Acids Symp Ser; 1997; (37):161-2. PubMed ID: 9586049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Searching for nitrile hydratase using the Consensus-Degenerate Hybrid Oligonucleotide Primers strategy.
    Lourenço PM; Almeida T; Mendonça D; Simões F; Novo C
    J Basic Microbiol; 2004; 44(3):203-14. PubMed ID: 15162394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombination between prokaryotic and eukaryotic DNA: integration of Agrobacterium tumefaciens T-DNA into the plant genome.
    Tinland B; Hohn B
    Genet Eng (N Y); 1995; 17():209-29. PubMed ID: 7779513
    [No Abstract]   [Full Text] [Related]  

  • 16. Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone.
    Pruss GJ; Nester EW; Vance V
    Mol Plant Microbe Interact; 2008 Dec; 21(12):1528-38. PubMed ID: 18986249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical assessment of Agrobacterium tumefaciens-mediated transformation as a tool for pathogenicity gene discovery in the phytopathogenic fungus Leptosphaeria maculans.
    Blaise F; Rémy E; Meyer M; Zhou L; Narcy JP; Roux J; Balesdent MH; Rouxel T
    Fungal Genet Biol; 2007 Feb; 44(2):123-38. PubMed ID: 16979359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumour free.
    Brencic A; Angert ER; Winans SC
    Mol Microbiol; 2005 Sep; 57(6):1522-31. PubMed ID: 16135221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobacterium tumefaciens-mediated transformation of filamentous fungi.
    de Groot MJ; Bundock P; Hooykaas PJ; Beijersbergen AG
    Nat Biotechnol; 1998 Sep; 16(9):839-42. PubMed ID: 9743116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Agrobacterium tumefaciens-mediated transformation of Chaetomium globosum and its T-DNA insertional mutagenesis].
    Gao XX; Yang Q
    Wei Sheng Wu Xue Bao; 2005 Feb; 45(1):129-31. PubMed ID: 15847179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.