These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 9429298)
21. Identification and properties of the glucose transporter of human erythrocytes. Hirano H; Kasahara M; Nagano M; Osumi M; Sase S; Takata K Tokai J Exp Clin Med; 1982; 7 Suppl():121-9. PubMed ID: 6892254 [TBL] [Abstract][Full Text] [Related]
22. Biomembrane affinity chromatographic analysis of nitrobenzylthioinosine binding to the reconstituted human red cell nucleoside transporter. Haneskog L; Lundqvist A; Lundahl P J Mol Recognit; 1998; 11(1-6):58-61. PubMed ID: 10076807 [TBL] [Abstract][Full Text] [Related]
23. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes. Albert SG Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046 [TBL] [Abstract][Full Text] [Related]
24. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding. Coderre PE; Cloherty EK; Zottola RJ; Carruthers A Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of biotinylated bis(D-glucose) derivatives for glucose transporter photoaffinity labelling. Hashimoto M; Hatanaka Y; Yang J; Dhesi J; Holman GD Carbohydr Res; 2001 Mar; 331(2):119-27. PubMed ID: 11322726 [TBL] [Abstract][Full Text] [Related]
26. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter. Brekkan E; Lundqvist A; Lundahl P Biochemistry; 1996 Sep; 35(37):12141-5. PubMed ID: 8810921 [TBL] [Abstract][Full Text] [Related]
27. Effects of three proposed inhibitors of adipocyte glucose transport on the reconstituted transporter. Wheeler TJ Biochim Biophys Acta; 1989 Mar; 979(3):331-40. PubMed ID: 2647147 [TBL] [Abstract][Full Text] [Related]
28. Transport function and subcellular distribution of purified human erythrocyte glucose transporter reconstituted into rat adipocytes. Jo I; Hah JS; Rampal AL; Chakrabarti R; Paterson AR; Craik JD; Cass CE; Zobel CR; Jung CY Biochim Biophys Acta; 1992 Apr; 1106(1):45-55. PubMed ID: 1581335 [TBL] [Abstract][Full Text] [Related]
29. Differentiation of erythrocyte-(GLUT1), liver-(GLUT2), and adipocyte-type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine. Hellwig B; Joost HG Mol Pharmacol; 1991 Sep; 40(3):383-9. PubMed ID: 1716731 [TBL] [Abstract][Full Text] [Related]
30. Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. Jansson T; Wennergren M; Illsley NP J Clin Endocrinol Metab; 1993 Dec; 77(6):1554-62. PubMed ID: 8263141 [TBL] [Abstract][Full Text] [Related]
31. Probe of specific interaction between a simplified synthetic glycopolymer and erythrocytes as mediated by a glucose transporter (GLUT) on a cell membrane. Park KH; Na K; Akaike T; Lee KC J Biomed Mater Res; 2002 Mar; 59(3):591-4. PubMed ID: 11774318 [TBL] [Abstract][Full Text] [Related]
32. Glucose regulates its transport in L8 myocytes by modulating cellular trafficking of the transporter GLUT-1. Greco-Perotto R; Wertheimer E; Jeanrenaud B; Cerasi E; Sasson S Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):157-63. PubMed ID: 1520263 [TBL] [Abstract][Full Text] [Related]
33. Conversion between two cytochalasin B-binding states of the human GLUT1 glucose transporter. Gottschalk I; Lundqvist A; Zeng CM; Hägglund CL; Zuo SS; Brekkan E; Eaker D; Lundahl P Eur J Biochem; 2000 Dec; 267(23):6875-82. PubMed ID: 11082199 [TBL] [Abstract][Full Text] [Related]
34. The efficient intracellular sequestration of the insulin-regulatable glucose transporter (GLUT-4) is conferred by the NH2 terminus. Piper RC; Tai C; Slot JW; Hahn CS; Rice CM; Huang H; James DE J Cell Biol; 1992 May; 117(4):729-43. PubMed ID: 1577853 [TBL] [Abstract][Full Text] [Related]
35. Reconstitution of glucose transport activity from erythrocyte membranes without detergent and its use in studying effects of ATP depletion. Wheeler TJ Biochim Biophys Acta; 1986 Jul; 859(2):180-8. PubMed ID: 3730375 [TBL] [Abstract][Full Text] [Related]
36. Structural domains that contribute to substrate specificity in facilitated glucose transporters are distinct from those involved in kinetic function: studies with GLUT-1/GLUT-2 chimeras. Noel LE; Newgard CB Biochemistry; 1997 May; 36(18):5465-75. PubMed ID: 9154929 [TBL] [Abstract][Full Text] [Related]
37. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Cloherty EK; Levine KB; Carruthers A Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430 [TBL] [Abstract][Full Text] [Related]
38. The human red cell glucose transporter in octyl glucoside. High specific activity of monomers in the presence of membrane lipids. Mascher E; Lundahl P Biochim Biophys Acta; 1988 Nov; 945(2):350-9. PubMed ID: 3191128 [TBL] [Abstract][Full Text] [Related]
39. Expression of glucose transporters in human peritoneal mesothelial cells. Schröppel B; Fischereder M; Wiese P; Segerer S; Huber S; Kretzler M; Heiss P; Sitter T; Schlöndorff D Kidney Int; 1998 May; 53(5):1278-87. PubMed ID: 9573543 [TBL] [Abstract][Full Text] [Related]
40. Human erythrocyte hexose transporter activity is governed by bilayer lipid composition in reconstituted vesicles. Carruthers A; Melchior DL Biochemistry; 1984 Dec; 23(26):6901-11. PubMed ID: 6543323 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]