These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9429305)

  • 1. Impact of taxol-mediated stabilization of microtubules on nuclear morphology, ploidy levels and cell growth in maize roots.
    Baluska F; Samaj J; Volkmann D; Barlow PW
    Biol Cell; 1997 Jun; 89(3):221-31. PubMed ID: 9429305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete disintegration of the microtubular cytoskeleton precedes its auxin-mediated reconstruction in postmitotic maize root cells.
    Baluska F; Barlow PW; Volkmann D
    Plant Cell Physiol; 1996 Oct; 37(7):1013-21. PubMed ID: 11536780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the microtubular cytoskeleton in determining nuclear chromatin structure and passage of maize root cells through the cell cycle.
    Baluska F; Barlow PW
    Eur J Cell Biol; 1993 Jun; 61(1):160-7. PubMed ID: 8223701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gravitropism of the primary root of maize: a complex pattern of differential cellular growth in the cortex independent of the microtubular cytoskeleton.
    Baluska F; Hauskrecht M; Barlow PW; Sievers A
    Planta; 1996 Feb; 198(2):310-8. PubMed ID: 11540727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots.
    Hasenstein KH; Blancaflor EB; Lee JS
    Physiol Plant; 1999 Apr; 105(4):729-38. PubMed ID: 11542390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of taxol and ethyl-N-phenylcarbamate (EPC) on growth and gravitropism in Zea mays L.
    Park YH; Choy YH; Lee JS
    Singmul Hakhoe Chi; 1996 Dec; 39(4):287-93. PubMed ID: 11540135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lilliputian mutant of maize lacks cell elongation and shows defects in organization of actin cytoskeleton.
    Baluska F; Busti E; Dolfini S; Gavazzi G; Volkmann D
    Dev Biol; 2001 Aug; 236(2):478-91. PubMed ID: 11476586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nod factors alter the microtubule cytoskeleton in Medicago truncatula root hairs to allow root hair reorientation.
    Sieberer BJ; Timmers AC; Emons AM
    Mol Plant Microbe Interact; 2005 Nov; 18(11):1195-204. PubMed ID: 16353554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of spindle microtubule organization in untreated and taxol-treated PtK1 cells.
    Snyder JA; Mullins JM
    Cell Biol Int; 1993 Dec; 17(12):1075-84. PubMed ID: 7906984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distributional changes and role of microtubules in Nod factor-challenged Medicago sativa root hairs.
    Weerasinghe RR; Collings DA; Johannes E; Allen NS
    Planta; 2003 Dec; 218(2):276-87. PubMed ID: 12942325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.).
    Blancaflor EB
    J Plant Growth Regul; 2000 Dec; 19(4):406-14. PubMed ID: 11762380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of actin filaments in Zea mays by bisphenol A depends on their crosstalk with microtubules.
    Stavropoulou K; Adamakis IS; Panteris E; Arseni EM; Eleftheriou EP
    Chemosphere; 2018 Mar; 195():653-665. PubMed ID: 29287273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of taxol on the organization of the cytoskeleton in cultured ovarian granulosa cells.
    Herman B; Langevin MA; Albertini DF
    Eur J Cell Biol; 1983 Jul; 31(1):34-45. PubMed ID: 6137363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taxol induces the formation of unusual arrays of cellular microtubules in colchicine-pretreated J774.2 cells.
    Manfredi JJ; Fant J; Horwitz SB
    Eur J Cell Biol; 1986 Oct; 42(1):126-34. PubMed ID: 2878805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol.
    Baskin TI; Wilson JE; Cork A; Williamson RE
    Plant Cell Physiol; 1994 Sep; 35(6):935-42. PubMed ID: 7981964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol.
    Mikhailov A; Gundersen GG
    Cell Motil Cytoskeleton; 1998; 41(4):325-40. PubMed ID: 9858157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nocodazole and taxol affect subcellular compartments but not secretory activity of GH3B6 prolactin cells.
    Van De Moortele S; Picart R; Tixier-Vidal A; Tougard C
    Eur J Cell Biol; 1993 Apr; 60(2):217-27. PubMed ID: 7687214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of natural product microtubule stabilizers on microtubule assembly: single agent and combination studies with taxol, epothilone B, and discodermolide.
    Gertsch J; Meier S; Müller M; Altmann KH
    Chembiochem; 2009 Jan; 10(1):166-75. PubMed ID: 19058273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time and cell cycle dependent formation of heterogeneous tubulin arrays induced by colchicine in Triticum aestivum root meristem.
    Lazareva EM; Polyakov VY; Chentsov YS; Smirnova EA
    Cell Biol Int; 2003; 27(8):633-46. PubMed ID: 12867155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental manipulation of gamma-tubulin distribution in Arabidopsis using anti-microtubule drugs.
    Liu B; Joshi HC; Palevitz BA
    Cell Motil Cytoskeleton; 1995; 31(2):113-29. PubMed ID: 7553905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.