BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9430244)

  • 1. Nondestructive determination of iliac crest cancellous bone strength by pQCT.
    Ebbesen EN; Thomsen JS; Mosekilde L
    Bone; 1997 Dec; 21(6):535-40. PubMed ID: 9430244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting human vertebral bone strength by vertebral static histomorphometry.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 2002 Mar; 30(3):502-8. PubMed ID: 11882465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 1998 Feb; 22(2):153-63. PubMed ID: 9477239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age- and gender-related differences in vertebral bone mass, density, and strength.
    Ebbesen EN; Thomsen JS; Beck-Nielsen H; Nepper-Rasmussen HJ; Mosekilde L
    J Bone Miner Res; 1999 Aug; 14(8):1394-403. PubMed ID: 10457272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive value of bone mineral density and morphology determined by peripheral quantitative computed tomography for cancellous bone strength of the proximal femur.
    Wachter NJ; Augat P; Mentzel M; Sarkar MR; Krischak GD; Kinzl L; Claes LE
    Bone; 2001 Jan; 28(1):133-9. PubMed ID: 11165955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrelationships between bone microarchitecture and strength in ovariectomized monkeys treated with teriparatide.
    Chen P; Jerome CP; Burr DB; Turner CH; Ma YL; Rana A; Sato M
    J Bone Miner Res; 2007 Jun; 22(6):841-8. PubMed ID: 17352652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics.
    Cendre E; Mitton D; Roux JP; Arlot ME; Duboeuf F; Burt-Pichat B; Rumelhart C; Peix G; Meunier PJ
    Osteoporos Int; 1999; 10(5):353-60. PubMed ID: 10591832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing.
    Ebbesen EN; Thomsen JS; Beck-Nielsen H; Nepper-Rasmussen HJ; Mosekilde L
    Bone; 1999 Dec; 25(6):713-24. PubMed ID: 10593417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical competence of iliac crest trabecular bone in autosomal dominant osteopetrosis type I.
    Bollerslev J; Mosekilde L; Nielsen HK; Mosekilde L
    Bone; 1989; 10(3):159-64. PubMed ID: 2803852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iliac crest trabecular bone volume as predictor for vertebral compressive strength, ash density and trabecular bone volume in normal individuals.
    Mosekilde L; Mosekilde L
    Bone; 1988; 9(4):195-9. PubMed ID: 3166835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biopsy vs. peripheral computed tomography to assess bone disease in CKD patients on dialysis: differences and similarities.
    Marques ID; Araújo MJ; Graciolli FG; Reis LM; Pereira RM; Custódio MR; Jorgetti V; Elias RM; David-Neto E; Moysés RM
    Osteoporos Int; 2017 May; 28(5):1675-1683. PubMed ID: 28204954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality.
    MacNeil JA; Boyd SK
    Med Eng Phys; 2007 Dec; 29(10):1096-105. PubMed ID: 17229586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometry and bone mass in primary hyperparathyroidism assessed by peripheral Quantitative Computed Tomography (pQCT).
    Di Leo C; Bestetti A; Bastagli A; De Pasquale L; Tagliabue L; Bagni B; Pepe L; Tarolo GL
    Radiol Med; 2003 Mar; 105(3):171-9. PubMed ID: 12835640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties.
    Jiang Y; Zhao J; Augat P; Ouyang X; Lu Y; Majumdar S; Genant HK
    J Bone Miner Res; 1998 Nov; 13(11):1783-90. PubMed ID: 9797489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensile and compressive properties of cancellous bone.
    Røhl L; Larsen E; Linde F; Odgaard A; Jørgensen J
    J Biomech; 1991; 24(12):1143-9. PubMed ID: 1769979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT.
    Müller R; Hildebrand T; Häuselmann HJ; Rüegsegger P
    J Bone Miner Res; 1996 Nov; 11(11):1745-50. PubMed ID: 8915782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pQCT bone strength index may serve as a better predictor than bone mineral density for long bone breaking strength.
    Siu WS; Qin L; Leung KS
    J Bone Miner Metab; 2003; 21(5):316-22. PubMed ID: 12928834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of bone from iliac crest and relationship to L5 vertebral bone.
    Britton JM; Davie MW
    Bone; 1990; 11(1):21-8. PubMed ID: 2331427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static histomorphometry of human iliac crest and vertebral trabecular bone: a comparative study.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 2002 Jan; 30(1):267-74. PubMed ID: 11792596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related changes in the compressive strength of cancellous bone. The relative importance of changes in density and trabecular architecture.
    McCalden RW; McGeough JA; Court-Brown CM
    J Bone Joint Surg Am; 1997 Mar; 79(3):421-7. PubMed ID: 9070533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.