These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 9430339)
1. Antibiotic delivery system using bioactive bone cement consisting of Bis-GMA/TEGDMA resin and bioactive glass ceramics. Otsuka M; Sawada M; Matsuda Y; Nakamura T; Kokubo T Biomaterials; 1997 Dec; 18(23):1559-64. PubMed ID: 9430339 [TBL] [Abstract][Full Text] [Related]
2. Effects of ceramic component on cephalexin release from bioactive bone cement consisting of Bis-GMA/TEGDMA resin and bioactive glass ceramics. Otsuka M; Fujita H; Nakamura T; Kokubo T Biomed Mater Eng; 2001; 11(1):11-22. PubMed ID: 11281575 [TBL] [Abstract][Full Text] [Related]
3. Effects of water-soluble component content on cephalexin release from bioactive bone cement consisting of bis-GMA/TEGDMA resin and bioactive glass ceramics. Otsuka M; Sawada M; Matsuda Y; Nakamura T; Kokubo T J Mater Sci Mater Med; 1999 Jan; 10(1):59-64. PubMed ID: 15347995 [TBL] [Abstract][Full Text] [Related]
4. Mechanical behavior of bioactive composite cements consisting of resin and glass-ceramic powder in a simulated body fluid: effect of silane coupling agent. Miyata N; Matsuura W; Kokubo T; Nakamura T J Mater Sci Mater Med; 2004 Sep; 15(9):1013-20. PubMed ID: 15448409 [TBL] [Abstract][Full Text] [Related]
5. Development of high-viscosity, two-paste bioactive bone cements. Deb S; Aiyathurai L; Roether JA; Luklinska ZB Biomaterials; 2005 Jun; 26(17):3713-8. PubMed ID: 15621261 [TBL] [Abstract][Full Text] [Related]
6. Surface structural change of bioactive inorganic filler-resin composite cement in simulated body fluid: effect of resin. Miyaji F; Morita Y; Kokubo T; Nakamura T J Biomed Mater Res; 1998 Dec; 42(4):604-10. PubMed ID: 9827685 [TBL] [Abstract][Full Text] [Related]
7. Effect of bioactive filler content on mechanical properties and osteoconductivity of bioactive bone cement. Kobayashi M; Nakamura T; Shinzato S; Mousa WF; Nishio K; Ohsawa K; Kokubo T; Kikutani T J Biomed Mater Res; 1999 Sep; 46(4):447-57. PubMed ID: 10398005 [TBL] [Abstract][Full Text] [Related]
8. A new bioactive bone cement consisting of BIS-GMA resin and bioactive glass powder. Kawanabe K; Tamura J; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S J Appl Biomater; 1993; 4(2):135-41. PubMed ID: 10148600 [TBL] [Abstract][Full Text] [Related]
9. Regulation of NaF release from bis-GMA/TEGDMA resin using gamma-methacryloxypropyltrimethoxysilane. Nakabo S; Torii Y; Itota T; Ishikawa K; Suzuki K Dent Mater; 2002 Jan; 18(1):81-7. PubMed ID: 11740968 [TBL] [Abstract][Full Text] [Related]
10. Bioactive bone cement: comparison of apatite and wollastonite containing glass-ceramic, hydroxyapatite, and beta-tricalcium phosphate fillers on bone-bonding strength. Kobayashi M; Nakamura T; Okada Y; Fukumoto A; Furukawa T; Kato H; Kokubo T; Kikutani T J Biomed Mater Res; 1998 Nov; 42(2):223-37. PubMed ID: 9773818 [TBL] [Abstract][Full Text] [Related]
11. A bioactive bone cement containing Bis-GMA resin and A-W glass-ceramic as an augmentation graft material on mandibular bone. Fujimura K; Bessho K; Okubo Y; Segami N; Iizuka T Clin Oral Implants Res; 2003 Oct; 14(5):659-67. PubMed ID: 12969371 [TBL] [Abstract][Full Text] [Related]
12. Bioactive bone cement: comparison of AW-GC filler with hydroxyapatite and beta-TCP fillers on mechanical and biological properties. Kobayashi M; Nakamura T; Tamura J; Kokubo T; Kikutani T J Biomed Mater Res; 1997 Dec; 37(3):301-13. PubMed ID: 9368135 [TBL] [Abstract][Full Text] [Related]
13. A novel skeletal drug delivery system using self-setting bioactive glass bone cement. IV: Cephalexin release from cement containing polymer-coated bulk powder. Otsuka M; Matsuda Y; Kokubo T; Yoshihara S; Nakamura T; Yamamuro T Biomed Mater Eng; 1993; 3(4):229-36. PubMed ID: 8205064 [TBL] [Abstract][Full Text] [Related]
14. Bioactive bone cement: effect of the amount of glass-ceramic powder on bone-bonding strength. Fujita H; Nakamura T; Tamura J; Kobayashi M; Katsura Y; Kokubo T; Kikutani T J Biomed Mater Res; 1998 Apr; 40(1):145-52. PubMed ID: 9511109 [TBL] [Abstract][Full Text] [Related]
15. Pressurization of bioactive bone cement in vitro. Fujita H; Iida H; Kawanabe K; Okada Y; Oka M; Masuda T; Kitamura Y; Nakamura T J Biomed Mater Res; 1999; 48(1):43-51. PubMed ID: 10029149 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of new dimethacrylate monomer and its application in dental resin. He J; Liu F; Vallittu PK; Lassila LV J Biomater Sci Polym Ed; 2013; 24(4):417-30. PubMed ID: 23565684 [TBL] [Abstract][Full Text] [Related]
18. Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. Shinzato S; Kobayashi M; Mousa WF; Kamimura M; Neo M; Kitamura Y; Kokubo T; Nakamura T J Biomed Mater Res; 2000 Aug; 51(2):258-72. PubMed ID: 10825226 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, characterization and evaluation of a fluorinated resin monomer with low water sorption. Liu X; Wang Z; Zhao C; Bu W; Zhang Y; Na H J Mech Behav Biomed Mater; 2018 Jan; 77():446-454. PubMed ID: 29028596 [TBL] [Abstract][Full Text] [Related]
20. Transmission electron microscopic study of interface between bioactive bone cement and bone: comparison of apatite and wollastonite containing glass-ceramic filler with hydroxyapatite and beta-tricalcium phosphate fillers. Okada Y; Kobayashi M; Fujita H; Katsura Y; Matsuoka H; Takadama H; Kokubo T; Nakamura T J Biomed Mater Res; 1999 Jun; 45(4):277-84. PubMed ID: 10321699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]