BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9430418)

  • 1. Antinociceptive effects of (+)-matrine in mice.
    Kamei J; Xiao P; Ohsawa M; Kubo H; Higashiyama K; Takahashi H; Li J; Nagase H; Ohmiya S
    Eur J Pharmacol; 1997 Oct; 337(2-3):223-6. PubMed ID: 9430418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. kappa-Opioid receptor-mediated antinociceptive effects of stereoisomers and derivatives of (+)-matrine in mice.
    Xiao P; Kubo H; Ohsawa M; Higashiyama K; Nagase H; Yan YN; Li JS; Kamei J; Ohmiya S
    Planta Med; 1999 Apr; 65(3):230-3. PubMed ID: 10232067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implication of the descending dynorphinergic neuron projecting to the spinal cord in the (+)-matrine- and (+)-allomatrine-induced antinociceptive effects.
    Higashiyama K; Takeuchi Y; Yamauchi T; Imai S; Kamei J; Yajima Y; Narita M; Suzuki T
    Biol Pharm Bull; 2005 May; 28(5):845-8. PubMed ID: 15863891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of delta 1-opioid receptors in the antinociceptive effects of mexiletine in mice.
    Kamei J; Saitoh A; Kasuya Y
    Neurosci Lett; 1995 Aug; 196(3):169-72. PubMed ID: 7501275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of diabetes on the antinociceptive effect of (+/-)pentazocine in mice.
    Kamei J; Iwamoto Y; Misawa M; Nagase H; Kasuya Y
    Res Commun Chem Pathol Pharmacol; 1994 Apr; 84(1):105-10. PubMed ID: 8042002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The antinociceptive effects of endomorphin-1 and endomorphin-2 in diabetic mice.
    Kamei J; Zushida K; Ohsawa M; Nagase H
    Eur J Pharmacol; 2000 Mar; 391(1-2):91-6. PubMed ID: 10720639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antinociceptive effects of the selective non-peptidic delta-opioid receptor agonist TAN-67 in diabetic mice.
    Kamei J; Saitoh A; Ohsawa M; Suzuki T; Misawa M; Nagase H; Kasuya Y
    Eur J Pharmacol; 1995 Mar; 276(1-2):131-5. PubMed ID: 7781682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of mu-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa.
    Matsumoto K; Hatori Y; Murayama T; Tashima K; Wongseripipatana S; Misawa K; Kitajima M; Takayama H; Horie S
    Eur J Pharmacol; 2006 Nov; 549(1-3):63-70. PubMed ID: 16978601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antinociceptive effect of oxycodone in diabetic mice.
    Nozaki C; Saitoh A; Tamura N; Kamei J
    Eur J Pharmacol; 2005 Nov; 524(1-3):75-9. PubMed ID: 16256106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of diabetes on pinacidil-induced antinociception in mice.
    Zushida K; Onodera K; Kamei J
    Eur J Pharmacol; 2002 Oct; 453(2-3):209-15. PubMed ID: 12398906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antinociceptive effect of lipopolysaccharide from Pantoea agglomerans on streptozotocin-induced diabetic mice.
    Kamei J; Iwamoto Y; Suzuki T; Misawa M; Kasuya Y; Nagase H; Okutomi T; Soma G; Mizuno D
    Eur J Pharmacol; 1994 Jan; 251(1):95-8. PubMed ID: 8137875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opioid system mediated anti-nociceptive effect of agomelatine in mice.
    Kasap M; Can ÖD
    Life Sci; 2016 Oct; 163():55-63. PubMed ID: 27590609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antinociceptive effect of dihydroetorphine in diabetic mice.
    Kamei J; Suzuki T; Misawa M; Nagase H; Kasuya Y
    Eur J Pharmacol; 1995 Feb; 275(1):109-13. PubMed ID: 7774657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antinociceptive effects of 1-acyl-4-dialkylaminopiperidine and 1-alkyl-4-dialkylaminopiperidine in mice: structure-activity relation study of matrine-type alkaloids.
    Kobashi S; Kubo H; Yamauchi T; Higashiyama K
    Biol Pharm Bull; 2002 Aug; 25(8):1030-4. PubMed ID: 12186404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antinociceptive effects of N-acyloctahydropyrido[3,2,1-ij][1,6]naphthyridine in mice: structure-activity relation study of matrine-type alkaloids part II.
    Kobashi S; Takizawa M; Kubo H; Yamauchi T; Higashiyama K
    Biol Pharm Bull; 2003 Mar; 26(3):375-9. PubMed ID: 12612452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-gated K(+) channel openers enhance opioid antinociception: indirect evidence for the release of endogenous opioid peptides.
    Lohmann AB; Welch SP
    Eur J Pharmacol; 1999 Dec; 385(2-3):119-27. PubMed ID: 10607867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence.
    Wells JL; Bartlett JL; Ananthan S; Bilsky EJ
    J Pharmacol Exp Ther; 2001 May; 297(2):597-605. PubMed ID: 11303048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of opioid receptor subtypes in antinociceptive actions of supraspinally-administered mitragynine in mice.
    Thongpradichote S; Matsumoto K; Tohda M; Takayama H; Aimi N; Sakai S; Watanabe H
    Life Sci; 1998; 62(16):1371-8. PubMed ID: 9585164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antinociceptive effect of L-arginine in diabetic mice.
    Kamei J; Iwamoto Y; Misawa M; Nagase H; Kasuya Y
    Eur J Pharmacol; 1994 Mar; 254(1-2):113-7. PubMed ID: 8206107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors.
    Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M
    Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.