BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9430608)

  • 1. NMR detection of 13CH313COOH from 3-13C-glucose: a signature for Bifidobacterium fermentation in the intestinal tract.
    Wolin MJ; Zhang Y; Bank S; Yerry S; Miller TL
    J Nutr; 1998 Jan; 128(1):91-6. PubMed ID: 9430608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in production of ethanol, acids and H2 from glucose by the fecal flora of a 16- to 158-d-old breast-fed infant.
    Wolin MJ; Yerry S; Miller TL; Zhang Y; Bank S
    J Nutr; 1998 Jan; 128(1):85-90. PubMed ID: 9430607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii.
    Bunesova V; Lacroix C; Schwab C
    Microb Ecol; 2018 Jan; 75(1):228-238. PubMed ID: 28721502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of alpha-D-[1,2-13C]glucose pentaacetate and alpha-D-glucose penta[2-13C]acetate in rat hepatocytes.
    Malaisse WJ; Ladrière L; Kadiata MM; Verbruggen I; Willem R
    Arch Biochem Biophys; 2000 Sep; 381(1):61-6. PubMed ID: 11019820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants.
    Thum C; Roy NC; McNabb WC; Otter DE; Cookson AL
    Gut Microbes; 2015; 6(6):352-63. PubMed ID: 26587678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13C-NMR study of glucose and pyruvate catabolism in four acetogenic species isolated from the human colon.
    Leclerc M; Bernalier A; Lelait M; Grivet JP
    FEMS Microbiol Lett; 1997 Jan; 146(2):199-204. PubMed ID: 9011041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of fermentation pathways of fecal microbial communities associated with a drug treatment that increases dietary starch in the human colon.
    Wolin MJ; Miller TL; Yerry S; Zhang Y; Bank S; Weaver GA
    Appl Environ Microbiol; 1999 Jul; 65(7):2807-12. PubMed ID: 10388668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of colonic fermentation by bifidobacteria and pH in vitro. Impact on lactose metabolism, short-chain fatty acid, and lactate production.
    Jiang T; Savaiano DA
    Dig Dis Sci; 1997 Nov; 42(11):2370-7. PubMed ID: 9398819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans.
    Moens F; Verce M; De Vuyst L
    Int J Food Microbiol; 2017 Jan; 241():225-236. PubMed ID: 27810444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory effects of bifidobacteria on the growth of other colonic bacteria.
    Gibson GR; Wang X
    J Appl Bacteriol; 1994 Oct; 77(4):412-20. PubMed ID: 7989269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of Bifidobacterium longum ATCC 15707 fermentations: effect of the dilution rate and carbon source.
    Shene C; Mardones M; Zamora P; Bravo S
    Appl Microbiol Biotechnol; 2005 Jun; 67(5):623-30. PubMed ID: 15747118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique.
    Maathuis AJ; van den Heuvel EG; Schoterman MH; Venema K
    J Nutr; 2012 Jul; 142(7):1205-12. PubMed ID: 22623395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolism of glucose and lactose in Bifidobacterium animalis subsp. lactis, studied by 13C Nuclear Magnetic Resonance.
    González-Rodríguez I; Gaspar P; Sánchez B; Gueimonde M; Margolles A; Neves AR
    Appl Environ Microbiol; 2013 Dec; 79(24):7628-38. PubMed ID: 24077711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans.
    Bouhnik Y; Flourié B; D'Agay-Abensour L; Pochart P; Gramet G; Durand M; Rambaud JC
    J Nutr; 1997 Mar; 127(3):444-8. PubMed ID: 9082028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance studies of carbohydrate metabolism and substrate cycling in Fasciola hepatica.
    Matthews PM; Foxall D; Shen L; Mansour TE
    Mol Pharmacol; 1986 Jan; 29(1):65-73. PubMed ID: 3945228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and metabolism of Bifidobacterium adolescentis MB 239 growing on glucose, galactose, lactose, and galactooligosaccharides.
    Amaretti A; Bernardi T; Tamburini E; Zanoni S; Lomma M; Matteuzzi D; Rossi M
    Appl Environ Microbiol; 2007 Jun; 73(11):3637-44. PubMed ID: 17434997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and final product formation by Bifidobacterium infantis in aerated fermentations.
    González R; Blancas A; Santillana R; Azaola A; Wacher C
    Appl Microbiol Biotechnol; 2004 Oct; 65(5):606-10. PubMed ID: 15085297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13C-NMR, 1H-NMR and gas-chromatography mass-spectrometry studies of the biosynthesis of 13C-enriched L-lysine by Brevibacterium flavum.
    Inbar L; Lapidot A
    Eur J Biochem; 1987 Feb; 162(3):621-33. PubMed ID: 3030742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Fate of
    Lamichhane S; Yde CC; Jensen HM; Morovic W; Hibberd AA; Ouwehand AC; Saarinen MT; Forssten SD; Wiebe L; Marcussen J; Bertelsen K; Meier S; Young JF; Bertram HC
    J Proteome Res; 2018 Mar; 17(3):1041-1053. PubMed ID: 29359944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucolytic fingerprinting reveals metabolic groups within the genus Bifidobacterium: an exploratory study.
    Rios-Covián D; Sánchez B; Cuesta I; Cueto-Díaz S; Hernández-Barranco AM; Gueimonde M; De los Reyes-Gavilán CG
    Benef Microbes; 2016; 7(2):265-73. PubMed ID: 26839073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.