BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 9430651)

  • 41. Ku: a multifunctional protein involved in telomere maintenance.
    Fisher TS; Zakian VA
    DNA Repair (Amst); 2005 Nov; 4(11):1215-26. PubMed ID: 15979949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae.
    Barnes G; Rio D
    Proc Natl Acad Sci U S A; 1997 Feb; 94(3):867-72. PubMed ID: 9023348
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligase IV-dependent ligation in the presence of histone H1.
    Kysela B; Chovanec M; Jeggo PA
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1877-82. PubMed ID: 15671175
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rad52 and Ku bind to different DNA structures produced early in double-strand break repair.
    Ristic D; Modesti M; Kanaar R; Wyman C
    Nucleic Acids Res; 2003 Sep; 31(18):5229-37. PubMed ID: 12954758
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A noncatalytic function of the ligation complex during nonhomologous end joining.
    Cottarel J; Frit P; Bombarde O; Salles B; NĂ©grel A; Bernard S; Jeggo PA; Lieber MR; Modesti M; Calsou P
    J Cell Biol; 2013 Jan; 200(2):173-86. PubMed ID: 23337116
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recombination and repair. Ku starts at the end.
    Troelstra C; Jaspers NG
    Curr Biol; 1994 Dec; 4(12):1149-51. PubMed ID: 7704585
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The identification and characterization of mammalian proteins involved in the rejoining of DNA double-strand breaks in vitro.
    Johnson AP; Fairman MP
    Mutat Res; 1996 Oct; 364(2):103-16. PubMed ID: 8879276
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes.
    Lieber MR
    Genes Cells; 1999 Feb; 4(2):77-85. PubMed ID: 10320474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Telomeres and double-strand breaks: trying to make ends meet.
    Bertuch A; Lundblad V
    Trends Cell Biol; 1998 Sep; 8(9):339-42. PubMed ID: 9728393
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Complementation of the ionizing radiation sensitivity, DNA end binding, and V(D)J recombination defects of double-strand break repair mutants by the p86 Ku autoantigen.
    Boubnov NV; Hall KT; Wills Z; Lee SE; He DM; Benjamin DM; Pulaski CR; Band H; Reeves W; Hendrickson EA
    Proc Natl Acad Sci U S A; 1995 Jan; 92(3):890-4. PubMed ID: 7846073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electron microscopy visualization of DNA-protein complexes formed by Ku and DNA ligase IV.
    Grob P; Zhang TT; Hannah R; Yang H; Hefferin ML; Tomkinson AE; Nogales E
    DNA Repair (Amst); 2012 Jan; 11(1):74-81. PubMed ID: 22088982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Involvement of the Ku autoantigen in the cellular response to DNA double-strand breaks.
    Rathmell WK; Chu G
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7623-7. PubMed ID: 8052631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Non-homologous end joining requires that the DNA-PK complex undergo an autophosphorylation-dependent rearrangement at DNA ends.
    Reddy YV; Ding Q; Lees-Miller SP; Meek K; Ramsden DA
    J Biol Chem; 2004 Sep; 279(38):39408-13. PubMed ID: 15258142
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonhomologous end-joining in bacteria: a microbial perspective.
    Pitcher RS; Brissett NC; Doherty AJ
    Annu Rev Microbiol; 2007; 61():259-82. PubMed ID: 17506672
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The nonhomologous DNA end joining pathway is important for chromosome stability in primary fibroblasts.
    Karanjawala ZE; Grawunder U; Hsieh CL; Lieber MR
    Curr Biol; 1999 Dec 16-30; 9(24):1501-4. PubMed ID: 10607596
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase.
    Chen L; Trujillo K; Sung P; Tomkinson AE
    J Biol Chem; 2000 Aug; 275(34):26196-205. PubMed ID: 10854421
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The DNA-dependent protein kinase catalytic activity regulates DNA end processing by means of Ku entry into DNA.
    Calsou P; Frit P; Humbert O; Muller C; Chen DJ; Salles B
    J Biol Chem; 1999 Mar; 274(12):7848-56. PubMed ID: 10075677
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of the kinetic and equilibrium binding of Ku protein to DNA.
    Taghva A; Ma Y; Lieber MR
    J Theor Biol; 2002 Jan; 214(1):85-97. PubMed ID: 11786034
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One ring to bring them all--the role of Ku in mammalian non-homologous end joining.
    Grundy GJ; Moulding HA; Caldecott KW; Rulten SL
    DNA Repair (Amst); 2014 May; 17():30-8. PubMed ID: 24680220
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway.
    Frank-Vaillant M; Marcand S
    Genes Dev; 2001 Nov; 15(22):3005-12. PubMed ID: 11711435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.