These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 943094)

  • 1. The mechanism of coronary hyperemia induced by increased cardiac work.
    Müller-Ruchholtz ER; Neill WA
    Pflugers Arch; 1976 Jan; 361(2):197-9. PubMed ID: 943094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo.
    Portman MA; Standaert TA; Ning XH
    J Clin Invest; 1995 May; 95(5):2134-42. PubMed ID: 7738181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial anaerobic metabolism occurs at a critical coronary venous PO2 in pigs.
    Walley KR; Collins RM; Cooper DJ; Warriner CB
    Am J Respir Crit Care Med; 1997 Jan; 155(1):222-8. PubMed ID: 9001316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Phosphate compounds in isolated, perfused hearts during pH variation due to changes in extracellular PCO2 and bicarbonate].
    Kammermeier H; Rudroff W; Krautzberger W; Gerlach E
    Pflugers Arch; 1969; 312(1):R10-1. PubMed ID: 5390157
    [No Abstract]   [Full Text] [Related]  

  • 5. [Energy-rich phosphate compounds in the myocardium under the influence of adrenaline, noradrenaline and isoproterenol].
    Krautzberger W; Kammermeier H; Kammermeier B
    Pflugers Arch; 1969; 312(1):R6-7. PubMed ID: 5390286
    [No Abstract]   [Full Text] [Related]  

  • 6. Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia.
    Schrader J; Haddy FJ; Gerlach E
    Pflugers Arch; 1977 May; 369(1):1-6. PubMed ID: 560002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endotoxin-induced contractile dysfunction in guinea pig hearts is not mediated by nitric oxide.
    Decking UK; Flesche CW; Gödecke A; Schrader J
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2460-5. PubMed ID: 7541961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advantages of perfluorochemical perfusion in the isolated working rabbit heart preparation using 31P-NMR.
    Freeman D; Mayr H; Schmidt P; Roberts JD; Bing RJ
    Biochim Biophys Acta; 1987 Mar; 927(3):350-8. PubMed ID: 3814627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An isolated guinea pig heart preparation with in vivo like features.
    Bünger R; Haddy FJ; Querengässer A; Gerlach E
    Pflugers Arch; 1975; 353(4):317-26. PubMed ID: 1167671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac adenosine production is linked to myocardial pO2.
    Deussen A; Schrader J
    J Mol Cell Cardiol; 1991 Apr; 23(4):495-504. PubMed ID: 1942083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic consequences of Sephadex-induced reduction of coronary flow in isolated rat heart.
    Stam H; De Jong JW; Van Der Wiel HL
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 12():253-8. PubMed ID: 1031979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of tissue acidosis to ischemic injury in the perfused rat heart.
    Williamson JR; Schaffer SW; Ford C; Safer B
    Circulation; 1976 Mar; 53(3 Suppl):I3-14. PubMed ID: 3293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of isoproterenol on myocardial perfusion, function, energy metabolism and nitric oxide pathway in the rat heart - a longitudinal MR study.
    Desrois M; Kober F; Lan C; Dalmasso C; Cole M; Clarke K; Cozzone PJ; Bernard M
    NMR Biomed; 2014 May; 27(5):529-38. PubMed ID: 24677605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of carbon dioxide upon myocardial contractile performance, blood flow and oxygen consumption.
    van den Bos GC; Drake AJ; Noble MI
    J Physiol; 1979 Feb; 287():149-61. PubMed ID: 430387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of hypoxia on cardiac tissue. I. High energy phosphates content and oxygen uptake.
    Pelosi G; Conti F; Agliati G
    Eur J Pharmacol; 1969 Oct; 8(1):19-24. PubMed ID: 5357072
    [No Abstract]   [Full Text] [Related]  

  • 16. A comparison of the cardioprotective effects of calcium antagonists from different classes upon ischaemic damage in the guinea-pig working heart.
    Hugtenburg JG; Mathy MJ; Veldsema-Currie RD; Boddeke HW; Beckeringh JJ; van Zwieten PA
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Jul; 340(1):126-34. PubMed ID: 2797212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epicardial oxygen tensions during changes in arterial PO2 in pigs.
    Habazettl H; Conzen PF; Baier H; Christ M; Vollmar B; Goetz A; Peter K; Brendel W
    Adv Exp Med Biol; 1990; 277():437-47. PubMed ID: 2096647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oxygen pressure histogram in the left ventricular myocardium of the dog.
    Lösse B; Schuchhardt S; Niederle N
    Pflugers Arch; 1975 Apr; 356(2):121-32. PubMed ID: 1171436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent role of arterial O2 tension in local control of coronary blood flow.
    Baron JF; Vicaut E; Hou X; Duvelleroy M
    Am J Physiol; 1990 May; 258(5 Pt 2):H1388-94. PubMed ID: 2337174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic control of the circulation. Effects of acetate and pyruvate.
    Liang CS; Lowenstein JM
    J Clin Invest; 1978 Nov; 62(5):1029-38. PubMed ID: 568632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.