These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9431508)

  • 1. Imaging of oxygen saturation and distribution of erythrocytes in microvessels.
    Tateishi N; Suzuki Y; Tanaka J; Maeda N
    Microcirculation; 1997 Dec; 4(4):403-12. PubMed ID: 9431508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability.
    Suzuki Y; Tateishi N; Soutani M; Maeda N
    Microcirculation; 1996 Mar; 3(1):49-57. PubMed ID: 8846271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Determination of the rate of oxygen release from flowing erythrocytes in a microvessel--development of an apparatus and the application to microvessels of rat mesentery].
    Tateishi N
    Nihon Seirigaku Zasshi; 1990; 52(2):23-35. PubMed ID: 2139703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for measuring the rate of oxygen release from single microvessels.
    Tateishi N; Maeda N; Shiga T
    Circ Res; 1992 Apr; 70(4):812-9. PubMed ID: 1551204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative evaluation of flow dynamics of erythrocytes in microvessels: influence of erythrocyte aggregation.
    Soutani M; Suzuki Y; Tateishi N; Maeda N
    Am J Physiol; 1995 May; 268(5 Pt 2):H1959-65. PubMed ID: 7539592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A quantitative observation of erythrocyte flow dynamics in microvessels of isolated rabbit mesentery].
    Soutani M
    Nihon Seirigaku Zasshi; 1994; 56(6):181-95. PubMed ID: 8078034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow behavior of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformation and erythrocyte aggregation.
    Suzuki Y; Tateishi N; Soutani M; Maeda N
    Int J Microcirc Clin Exp; 1996; 16(4):187-94. PubMed ID: 8923151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance.
    Tateishi N; Suzuki Y; Soutani M; Maeda N
    J Biomech; 1994 Sep; 27(9):1119-25. PubMed ID: 7929461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance.
    Maeda N; Suzuki Y; Tanaka J; Tateishi N
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2454-61. PubMed ID: 8997305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-Dimensional Microvascular Analysis Reveals That Regenerative Angiogenesis in Ischemic Muscle Produces a Flawed Microcirculation.
    Arpino JM; Nong Z; Li F; Yin H; Ghonaim N; Milkovich S; Balint B; O'Neil C; Fraser GM; Goldman D; Ellis CG; Pickering JG
    Circ Res; 2017 Apr; 120(9):1453-1465. PubMed ID: 28174322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O(2) release from erythrocytes flowing in a narrow O(2)-permeable tube: effects of erythrocyte aggregation.
    Tateishi N; Suzuki Y; Cicha I; Maeda N
    Am J Physiol Heart Circ Physiol; 2001 Jul; 281(1):H448-56. PubMed ID: 11406514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced oxygen release from erythrocytes by the acceleration-induced flow shift, observed in an oxygen-permeable narrow tube.
    Tateishi N; Suzuki Y; Shirai M; Cicha I; Maeda N
    J Biomech; 2002 Sep; 35(9):1241-51. PubMed ID: 12163313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of oxygen transfer among microvessels of rat cremaster muscle.
    Kobayashi H; Takizawa N
    Circulation; 2002 Apr; 105(14):1713-9. PubMed ID: 11940552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible spectroscopic technique for flowing erythrocytes in capillary.
    Shiga T; Tateishi N; Maeda N
    Biorheology; 1990; 27(3-4):389-97. PubMed ID: 2261505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber optical spatial filter anemometry--intravital measurement of red blood flow velocity (RBCV) in the microcirculation.
    Hungerer S; Nolte D; Elstner B; Pröhl M; Messmer K
    Artif Cells Blood Substit Immobil Biotechnol; 2010 May; 38(3):119-28. PubMed ID: 20297922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated method for tracking individual red blood cells within capillaries to compute velocity and oxygen saturation.
    Japee SA; Pittman RN; Ellis CG
    Microcirculation; 2005 Sep; 12(6):507-15. PubMed ID: 16147467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Velocity profiles in the microvessels dependent on the velocity and concentration of erythrocytes].
    Mamisashvili VA; Baratashvili IK; Lominadze DG
    Fiziol Zh SSSR Im I M Sechenova; 1982 Dec; 68(12):1673-9. PubMed ID: 7166190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of ocular surface microcirculation by computer assisted video microscopy and diffuse reflectance spectroscopy.
    Kvernebo AK; Miyamoto T; Sporastøyl AH; Wikslund LK; Måsøy SE; Drolsum L; Moe MC; Salerud G; Fukamachi K; Kvernebo K
    Exp Eye Res; 2020 Dec; 201():108312. PubMed ID: 33157128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an Optical Triplicator for intravital video microscopy of oxygen saturation.
    Mott E; Pittman R; Grant JW
    IEEE Trans Biomed Eng; 1996 Nov; 43(11):1116-9. PubMed ID: 9214829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.