BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 9431677)

  • 21. Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria.
    Vicré M; Santaella C; Blanchet S; Gateau A; Driouich A
    Plant Physiol; 2005 Jun; 138(2):998-1008. PubMed ID: 15908608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A glycoconjugate from corms of saffron plant (Crocus sativus L.) inhibits root growth and affects in vitro cell viability.
    Fernández JA; Escribano J; Piqueras A; Medina J
    J Exp Bot; 2000 Apr; 51(345):731-7. PubMed ID: 10938865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function.
    Lamport DT; Kieliszewski MJ; Showalter AM
    New Phytol; 2006; 169(3):479-92. PubMed ID: 16411951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental expression and perturbation of arabinogalactan-proteins during seed germination and seedling growth in tomato.
    Lu H; Chen M; Showalter AM
    Physiol Plant; 2001 Jul; 112(3):442-450. PubMed ID: 11473703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arabinogalactan proteins are involved in root hair development in barley.
    Marzec M; Szarejko I; Melzer M
    J Exp Bot; 2015 Mar; 66(5):1245-57. PubMed ID: 25465033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiflagellated sperm cells of Ceratopteris richardii are bathed in arabinogalactan proteins throughout development.
    Lopez RA; Renzaglia KS
    Am J Bot; 2014 Dec; 101(12):2052-61. PubMed ID: 25480702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR-Cas9 multiplex genome editing of the hydroxyproline-O-galactosyltransferase gene family alters arabinogalactan-protein glycosylation and function in Arabidopsis.
    Zhang Y; Held MA; Kaur D; Showalter AM
    BMC Plant Biol; 2021 Jan; 21(1):16. PubMed ID: 33407116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of FUT4 and FUT6 α-(1 → 2)-fucosyltransferases reveals that absence of root arabinogalactan fucosylation increases Arabidopsis root growth salt sensitivity.
    Tryfona T; Theys TE; Wagner T; Stott K; Keegstra K; Dupree P
    PLoS One; 2014; 9(3):e93291. PubMed ID: 24667545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination.
    van Hengel AJ; Roberts K
    Plant J; 2003 Oct; 36(2):256-70. PubMed ID: 14535889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification, cloning and functional characterization of an endogenous beta-glucuronidase in Arabidopsis thaliana.
    Eudes A; Mouille G; Thévenin J; Goyallon A; Minic Z; Jouanin L
    Plant Cell Physiol; 2008 Sep; 49(9):1331-41. PubMed ID: 18667448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The reb1-1 mutation of Arabidopsis. Effect on the structure and localization of galactose-containing cell wall polysaccharides.
    Nguema-Ona E; Andème-Onzighi C; Aboughe-Angone S; Bardor M; Ishii T; Lerouge P; Driouich A
    Plant Physiol; 2006 Apr; 140(4):1406-17. PubMed ID: 16500990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and identification of glycosylphosphatidylinositol-anchored arabinogalactan proteins and novel beta-glucosyl Yariv-reactive proteins from seeds of rice (Oryza sativa).
    Mashiguchi K; Yamaguchi I; Suzuki Y
    Plant Cell Physiol; 2004 Dec; 45(12):1817-29. PubMed ID: 15653800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical and physiological characterization of fut4 and fut6 mutants defective in arabinogalactan-protein fucosylation in Arabidopsis.
    Liang Y; Basu D; Pattathil S; Xu WL; Venetos A; Martin SL; Faik A; Hahn MG; Showalter AM
    J Exp Bot; 2013 Dec; 64(18):5537-51. PubMed ID: 24127514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of three potent hydroxyproline O-galactosyltransferases in Arabidopsis.
    Ogawa-Ohnishi M; Matsubayashi Y
    Plant J; 2015 Mar; 81(5):736-46. PubMed ID: 25600942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extraction and detection of arabinogalactan proteins.
    Popper ZA
    Methods Mol Biol; 2011; 715():245-54. PubMed ID: 21222089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Yariv reagent: behaviour in different solvents and interaction with a gum arabic arabinogalactan-protein.
    Paulsen BS; Craik DJ; Dunstan DE; Stone BA; Bacic A
    Carbohydr Polym; 2014 Jun; 106():460-8. PubMed ID: 24721102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization of arabinogalactan proteins in anther, pollen, and pollen tube of Nicotiana tabacum L.
    Qin Y; Chen D; Zhao J
    Protoplasma; 2007; 231(1-2):43-53. PubMed ID: 17602278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural investigations on arabinogalactan-protein from wheat, isolated with Yariv reagent.
    Göllner EM; Blaschek W; Classen B
    J Agric Food Chem; 2010 Mar; 58(6):3621-6. PubMed ID: 20163180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and immunolocalization of arabinogalactan-proteins in roots of Echinacea purpurea.
    Bossy A; Blaschek W; Classen B
    Planta Med; 2009 Nov; 75(14):1526-33. PubMed ID: 19562658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structures formed by a cell membrane-associated arabinogalactan-protein on graphite or mica alone and with Yariv phenylglycosides.
    Zhou LH; Weizbauer RA; Singamaneni S; Xu F; Genin GM; Pickard BG
    Ann Bot; 2014 Oct; 114(6):1385-97. PubMed ID: 25164699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.