BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1038 related articles for article (PubMed ID: 9431679)

  • 1. Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase.
    Scheible WR; González-Fontes A; Morcuende R; Lauerer M; Geiger M; Glaab J; Gojon A; Schulze ED; Stitt M
    Planta; 1997; 203(3):304-19. PubMed ID: 9431679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis.
    Matt P; Schurr U; Klein D; Krapp A; Stitt M
    Planta; 1998 Dec; 207(1):27-41. PubMed ID: 9951717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tobacco plants that lack expression of functional nitrate reductase in roots show changes in growth rates and metabolite accumulation.
    Hänsch R; Fessel DG; Witt C; Hesberg C; Hoffmann G; Walch-Liu P; Engels C; Kruse J; Rennenberg H; Kaiser WM; Mendel RR
    J Exp Bot; 2001 Jun; 52(359):1251-8. PubMed ID: 11432943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative regulation of nitrate reductase gene expression by glutamine or asparagine accumulating in leaves of sulfur-deprived tobacco.
    Migge A; Bork C; Hell R; Becker TW
    Planta; 2000 Sep; 211(4):587-95. PubMed ID: 11030559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and importance of post-translational regulation of nitrate reductase.
    Lillo C; Meyer C; Lea US; Provan F; Oltedal S
    J Exp Bot; 2004 Jun; 55(401):1275-82. PubMed ID: 15107452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steps towards an integrated view of nitrogen metabolism.
    Stitt M; Müller C; Matt P; Gibon Y; Carillo P; Morcuende R; Scheible WR; Krapp A
    J Exp Bot; 2002 Apr; 53(370):959-70. PubMed ID: 11912238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The activation state of nitrate reductase is not always correlated with total nitrate reductase activity in leaves.
    Man HM; Abd-El Baki GK ; Stegmann P; Weiner H; Kaiser WM
    Planta; 1999 Oct; 209(4):462-8. PubMed ID: 10550627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of nitrate reductase by circadian and diurnal rhythms in tomato.
    Tucker DE; Allen DJ; Ort DR
    Planta; 2004 Jun; 219(2):277-85. PubMed ID: 14963706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diurnal changes in nitrogen assimilation of tobacco roots.
    Stöhr C; Mäck G
    J Exp Bot; 2001 Jun; 52(359):1283-9. PubMed ID: 11432947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites.
    Vincentz M; Moureaux T; Leydecker MT; Vaucheret H; Caboche M
    Plant J; 1993 Feb; 3(2):315-24. PubMed ID: 8220446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-transcriptional regulation of nitrate reductase by light is abolished by an N-terminal deletion.
    Nussaume L; Vincentz M; Meyer C; Boutin JP; Caboche M
    Plant Cell; 1995 May; 7(5):611-21. PubMed ID: 7780309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tomato nia gene complements a Nicotiana plumbaginifolia nitrate reductase-deficient mutant and is properly regulated.
    Dorbe MF; Caboche M; Daniel-Vedele F
    Plant Mol Biol; 1992 Jan; 18(2):363-75. PubMed ID: 1731994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoperiod affects the diurnal cycle of nitrate reductase expression and activity in pineapple plants by modulating the endogenous levels of cytokinins.
    Freschi L; Nievola CC; Rodrigues MA; Domingues DS; Van Sluys MA; Mercier H
    Physiol Plant; 2009 Nov; 137(3):201-12. PubMed ID: 19832938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-suppression of nitrate reductase host genes and transgenes in transgenic tobacco plants.
    Dorlhac de Borne F; Vincentz M; Chupeau Y; Vaucheret H
    Mol Gen Genet; 1994 Jun; 243(6):613-21. PubMed ID: 8028577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posttranslational regulation of nitrate reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minor influence.
    Lea US; Leydecker MT; Quilleré I; Meyer C; Lillo C
    Plant Physiol; 2006 Mar; 140(3):1085-94. PubMed ID: 16461378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interest in and limits to the utilization of reporter genes for the analysis of transcriptional regulation of nitrate reductase.
    Vaucheret H; Marion-Poll A; Meyer C; Faure JD; Marin E; Caboche M
    Mol Gen Genet; 1992 Nov; 235(2-3):259-68. PubMed ID: 1334527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate assimilation in the forage legume Lotus japonicus L.
    Prosser IM; Massonneau A; Smyth AJ; Waterhouse RN; Forde BG; Clarkson DT
    Planta; 2006 Mar; 223(4):821-34. PubMed ID: 16200407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants.
    Vincentz M; Caboche M
    EMBO J; 1991 May; 10(5):1027-35. PubMed ID: 2022181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different diurnal cycles of expression of two nitrate reductase transcripts in tobacco roots.
    Wienkoop S; Schlichting R; Ullrich WR; Stöhr C
    Protoplasma; 2001; 217(1-3):15-9. PubMed ID: 11732332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partitioning of nitrate assimilation among leaves, stems and roots of poplar.
    Black BL; Fuchigami LH; Coleman GD
    Tree Physiol; 2002 Jul; 22(10):717-24. PubMed ID: 12091153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.