These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 9431681)
1. Fatty acid distribution and lipid metabolism in developing seeds of laurate-producing rape (Brassica napus L.). Wiberg E; Banas A; Stymne S Planta; 1997; 203(3):341-8. PubMed ID: 9431681 [TBL] [Abstract][Full Text] [Related]
2. The distribution of caprylate, caprate and laurate in lipids from developing and mature seeds of transgenic Brassica napus L. Wiberg E; Edwards P; Byrne J; Stymne S; Dehesh K Planta; 2000 Dec; 212(1):33-40. PubMed ID: 11219581 [TBL] [Abstract][Full Text] [Related]
3. Expression of lauroyl-acyl carrier protein thioesterase in brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. Eccleston VS; Ohlrogge JB Plant Cell; 1998 Apr; 10(4):613-22. PubMed ID: 9548986 [TBL] [Abstract][Full Text] [Related]
4. Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Knutzon DS; Hayes TR; Wyrick A; Xiong H; Maelor Davies H ; Voelker TA Plant Physiol; 1999 Jul; 120(3):739-46. PubMed ID: 10398708 [TBL] [Abstract][Full Text] [Related]
5. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol. Aznar-Moreno J; Denolf P; Van Audenhove K; De Bodt S; Engelen S; Fahy D; Wallis JG; Browse J J Exp Bot; 2015 Oct; 66(20):6497-506. PubMed ID: 26195728 [TBL] [Abstract][Full Text] [Related]
6. Spatial and Temporal Mapping of Key Lipid Species in Woodfield HK; Sturtevant D; Borisjuk L; Munz E; Guschina IA; Chapman K; Harwood JL Plant Physiol; 2017 Apr; 173(4):1998-2009. PubMed ID: 28188274 [TBL] [Abstract][Full Text] [Related]
7. Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles. Horn PJ; Silva JE; Anderson D; Fuchs J; Borisjuk L; Nazarenus TJ; Shulaev V; Cahoon EB; Chapman KD Plant J; 2013 Oct; 76(1):138-50. PubMed ID: 23808562 [TBL] [Abstract][Full Text] [Related]
8. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds. Larson TR; Edgell T; Byrne J; Dehesh K; Graham IA Plant J; 2002 Nov; 32(4):519-27. PubMed ID: 12445123 [TBL] [Abstract][Full Text] [Related]
9. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Vigeolas H; Waldeck P; Zank T; Geigenberger P Plant Biotechnol J; 2007 May; 5(3):431-41. PubMed ID: 17430545 [TBL] [Abstract][Full Text] [Related]
10. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of Iskandarov U; Silva JE; Kim HJ; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB Plant Physiol; 2017 May; 174(1):97-109. PubMed ID: 28325847 [TBL] [Abstract][Full Text] [Related]
11. Identification of a potential bottleneck in branched chain fatty acid incorporation into triacylglycerol for lipid biosynthesis in agronomic plants. Nlandu Mputu M; Rhazi L; Vasseur G; Vu TD; Gontier E; Thomasset B Biochimie; 2009 Jun; 91(6):703-10. PubMed ID: 19327383 [TBL] [Abstract][Full Text] [Related]
12. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Zou J; Katavic V; Giblin EM; Barton DL; MacKenzie SL; Keller WA; Hu X; Taylor DC Plant Cell; 1997 Jun; 9(6):909-23. PubMed ID: 9212466 [TBL] [Abstract][Full Text] [Related]
13. Effect of germination potential on storage lipids and transcriptome changes in premature developing seeds of oilseed rape (Brassica napus L.). Zhu L; Zhao X; Xu Y; Wang Q; Wang H; Wu D; Jiang L Theor Appl Genet; 2020 Oct; 133(10):2839-2852. PubMed ID: 32617616 [TBL] [Abstract][Full Text] [Related]
14. Developmental Profile of Diacylglycerol Acyltransferase in Maturing Seeds of Oilseed Rape and Safflower and Microspore-Derived Cultures of Oilseed Rape. Weselake RJ; Pomeroy MK; Furukawa TL; Golden JL; Little DB; Laroche A Plant Physiol; 1993 Jun; 102(2):565-571. PubMed ID: 12231845 [TBL] [Abstract][Full Text] [Related]
15. A 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus enhances acyl exchange between acyl-CoA and phosphatidylcholine. Yurchenko OP; Nykiforuk CL; Moloney MM; Ståhl U; Banaś A; Stymne S; Weselake RJ Plant Biotechnol J; 2009 Sep; 7(7):602-10. PubMed ID: 19702754 [TBL] [Abstract][Full Text] [Related]
16. Evolution of phosphoenolpyruvate carboxylase activity and lipid content during seed maturation of two spring rapeseed cultivars (Brassica napus L.). Sebei K; Ouerghi Z; Kallel H; Boukhchina S C R Biol; 2006 Sep; 329(9):719-25. PubMed ID: 16945838 [TBL] [Abstract][Full Text] [Related]
17. Using lipidomics to reveal details of lipid accumulation in developing seeds from oilseed rape (Brassica napus L.). Woodfield HK; Cazenave-Gassiot A; Haslam RP; Guschina IA; Wenk MR; Harwood JL Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Mar; 1863(3):339-348. PubMed ID: 29275220 [TBL] [Abstract][Full Text] [Related]
18. No induction of beta-oxidation in leaves of Arabidopsis that over-produce lauric acid. Hooks MA; Fleming Y; Larson TR; Graham IA Planta; 1999 Jan; 207(3):385-92. PubMed ID: 9951734 [TBL] [Abstract][Full Text] [Related]
19. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. Molina I; Ohlrogge JB; Pollard M Plant J; 2008 Feb; 53(3):437-49. PubMed ID: 18179651 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of phospholipid: diacylglycerol acyltransferase in Brassica napus results in changes in lipid metabolism and oil accumulation. Fenyk S; Woodfield HK; Romsdahl TB; Wallington EJ; Bates RE; Fell DA; Chapman KD; Fawcett T; Harwood JL Biochem J; 2022 Mar; 479(6):805-823. PubMed ID: 35298586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]