These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Formation of fluoridated apatites on ion-permselective membranes. Okazaki M; Aoba T; Takahashi J; Kimura H; Doi Y; Moriwaki Y Caries Res; 1984; 18(1):41-6. PubMed ID: 6580952 [No Abstract] [Full Text] [Related]
6. Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries. Moreno EC; Kresak M; Zahradnik RT Caries Res; 1977; 11 Suppl 1():142-71. PubMed ID: 318568 [No Abstract] [Full Text] [Related]
7. Effect of under- and supersaturation with respect to some apatites in demineralizing buffers on artificial carious lesion formation in human tooth enamel. Theuns HM; Driessens FC; van Dijk JW Caries Res; 1986; 20(4):315-23. PubMed ID: 3459581 [No Abstract] [Full Text] [Related]
8. The influence of fluoride on the seeded growth of apatite from stable supersaturated solutions at pH 7.4. Eanes ED J Dent Res; 1980 Feb; 59(2):144-50. PubMed ID: 6928000 [TBL] [Abstract][Full Text] [Related]
9. The influence of fluoride on apatite formation from unstable supersaturated solutions at pH 7.4. Eanes ED; Meyer JL J Dent Res; 1978 Apr; 57(4):617-624. PubMed ID: 30787 [TBL] [Abstract][Full Text] [Related]
10. The effect of magnesium on apatite formation in seeded supersaturated solutions at pH 7.4. Eanes ED; Rattner SL J Dent Res; 1981 Sep; 60(9):1719-23. PubMed ID: 6943166 [No Abstract] [Full Text] [Related]
11. The problems of the composition and structure of the mineral components of the hard tissues. Elliott JC Clin Orthop Relat Res; 1973 Jun; (93):313-45. PubMed ID: 4579096 [No Abstract] [Full Text] [Related]
12. The selectivity of human dental enamel to ionic transport. Waters NE Arch Oral Biol; 1971 Mar; 16(3):305-22. PubMed ID: 5280434 [No Abstract] [Full Text] [Related]
13. Effect of solution composition on morphological and structural features of carbonated calcium apatites. Shimoda S; Aoba T; Moreno EC; Miake Y J Dent Res; 1990 Nov; 69(11):1731-40. PubMed ID: 2229611 [TBL] [Abstract][Full Text] [Related]
14. Orthophosphates. XIV. Thermodynamical factors influencing the stability of dental enamel to decay. Duff EJ Caries Res; 1973; 7(1):70-8. PubMed ID: 4509049 [No Abstract] [Full Text] [Related]
15. [The surface free energy of fluoridated enamel, monocrystalline hydroxyapatite, fluorapatite and calcium fluoride]. De Jong HP; Van Pelt AW; Busscher HJ; Arends J Ned Tijdschr Tandheelkd; 1983 Jun; 90(6):278-81. PubMed ID: 6577307 [No Abstract] [Full Text] [Related]
17. Preparation, analysis, and characterization of carbonated apatites. Nelson DG; Featherstone JD Calcif Tissue Int; 1982; 34 Suppl 2():S69-81. PubMed ID: 6293677 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of seeded growth of enamel apatite crystals by amelogenin and enamelin proteins in vitro. Doi Y; Eanes ED; Shimokawa H; Termine JD J Dent Res; 1984 Feb; 63(2):98-105. PubMed ID: 6582100 [TBL] [Abstract][Full Text] [Related]
19. Structure, crystal chemistry and density of enamel apatites. Elliott JC Ciba Found Symp; 1997; 205():54-67; discussion 67-72. PubMed ID: 9189617 [TBL] [Abstract][Full Text] [Related]
20. [Dental apatites by electron diffraction study and its impact on the level of piezo-electricity of teeth]. Charmoillaux Y; Kleinfinger S; Poinsier P J Biol Buccale; 1979 Dec; 7(4):365-76. PubMed ID: 294432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]