These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9433061)

  • 1. Spread of excitation in 3-D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry.
    Franzone PC; Guerri L; Pennacchio M; Taccardi B
    Math Biosci; 1998 Jan; 147(2):131-71. PubMed ID: 9433061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spreading of excitation in 3-D models of the anisotropic cardiac tissue. I. Validation of the eikonal model.
    Franzone PC; Guerri L
    Math Biosci; 1993 Feb; 113(2):145-209. PubMed ID: 8431650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spread of excitation in 3-D models of the anisotropic cardiac tissue. III. Effects of ventricular geometry and fiber structure on the potential distribution.
    Colli Franzone P; Guerri L; Pennacchio M; Taccardi B
    Math Biosci; 1998 Jul; 151(1):51-98. PubMed ID: 9664760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spread of excitation in a myocardial volume: simulation studies in a model of anisotropic ventricular muscle activated by point stimulation.
    Franzone PC; Guerri L; Taccardi B
    J Cardiovasc Electrophysiol; 1993 Apr; 4(2):144-60. PubMed ID: 8269287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations.
    Colli Franzone P; Guerri L; Rovida S
    J Math Biol; 1990; 28(2):121-76. PubMed ID: 2319210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of the excitation process in myocardial tissue: influence of fiber rotation on wavefront propagation and potential field.
    Franzone PC; Guerri L; Tentoni S
    Math Biosci; 1990 Oct; 101(2):155-235. PubMed ID: 2134484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing of depolarization and contraction in the paced canine left ventricle: model and experiment.
    Kerckhoffs RC; Faris OP; Bovendeerd PH; Prinzen FW; Smits K; McVeigh ER; Arts T
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S188-95. PubMed ID: 14760923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models of the spreading of excitation in myocardial tissue.
    Franzone PC; Guerri L
    Crit Rev Biomed Eng; 1992; 20(3-4):211-53. PubMed ID: 1478092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of myocardial fiber direction on epicardial potentials.
    Taccardi B; Macchi E; Lux RL; Ershler PR; Spaggiari S; Baruffi S; Vyhmeister Y
    Circulation; 1994 Dec; 90(6):3076-90. PubMed ID: 7994857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential distributions generated by point stimulation in a myocardial volume: simulation studies in a model of anisotropic ventricular muscle.
    Colli Franzone P; Guerri L; Taccardi B
    J Cardiovasc Electrophysiol; 1993 Aug; 4(4):438-58. PubMed ID: 8269311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture.
    Pravdin SF; Dierckx H; Katsnelson LB; Solovyova O; Markhasin VS; Panfilov AV
    PLoS One; 2014; 9(5):e93617. PubMed ID: 24817308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative description of dynamic left ventricular geometry in anaesthetized rats using magnetic resonance imaging.
    Crowley JJ; Huang CL; Gates AR; Basu A; Shapiro LM; Carpenter TA; Hall LD
    Exp Physiol; 1997 Sep; 82(5):887-904. PubMed ID: 9331556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomical architecture and electrical activity of the heart.
    Taccardi B; Lux RL; Ershler PR; MacLeod R; Dustman TJ; Ingebrigtsen N
    Acta Cardiol; 1997; 52(2):91-105. PubMed ID: 9187417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model study of intramural dispersion of action potential duration in the canine pulmonary conus.
    Cates AW; Pollard AE
    Ann Biomed Eng; 1998; 26(4):567-76. PubMed ID: 9662149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model.
    Huang Q; Eason JC; Claydon FJ
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element stress analysis of left ventricular mechanics in the beating dog heart.
    Guccione JM; Costa KD; McCulloch AD
    J Biomech; 1995 Oct; 28(10):1167-77. PubMed ID: 8550635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements.
    Leon LJ; Horácek BM
    J Electrocardiol; 1991 Jan; 24(1):1-15. PubMed ID: 2056264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer model of excitation and recovery in the anisotropic myocardium. III. Arrhythmogenic conditions in the simplified left ventricle.
    Leon LJ; Horácek BM
    J Electrocardiol; 1991 Jan; 24(1):33-41. PubMed ID: 2056266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.