These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9433756)

  • 1. Development of spatiotemporal receptive fields of simple cells: I. Model formulation.
    Wimbauer S; Wenisch OG; Miller KD; van Hemmen JL
    Biol Cybern; 1997 Dec; 77(6):453-61. PubMed ID: 9433756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of spatiotemporal receptive fields of simple cells: II. Simulation and analysis.
    Wimbauer S; Wenisch OG; van Hemmen JL; Miller KD
    Biol Cybern; 1997 Dec; 77(6):463-77. PubMed ID: 9433757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a correlation-based model for the development of orientation-selective receptive fields in the visual cortex.
    Wimbauer S; Gerstner W; van Hemmen JL
    Network; 1998 Nov; 9(4):449-66. PubMed ID: 10221574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs.
    Miller KD
    J Neurosci; 1994 Jan; 14(1):409-41. PubMed ID: 8283248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.
    Tanaka T; Aoyagi T; Kaneko T
    Neural Comput; 2012 Oct; 24(10):2700-25. PubMed ID: 22845820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation-based development of ocularly matched orientation and ocular dominance maps: determination of required input activities.
    Erwin E; Miller KD
    J Neurosci; 1998 Dec; 18(23):9870-95. PubMed ID: 9822745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging feed-forward inhibition allows the robust formation of direction selectivity in the developing ferret visual cortex.
    Van Hooser SD; Escobar GM; Maffei A; Miller P
    J Neurophysiol; 2014 Jun; 111(11):2355-73. PubMed ID: 24598528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laminar differences in the spatiotemporal structure of simple cell receptive fields in cat area 17.
    Murthy A; Humphrey AL; Saul AB; Feidler JC
    Vis Neurosci; 1998; 15(2):239-56. PubMed ID: 9605526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thalamocortical specificity and the synthesis of sensory cortical receptive fields.
    Alonso JM; Swadlow HA
    J Neurophysiol; 2005 Jul; 94(1):26-32. PubMed ID: 15985693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral spike conduction velocity in the visual cortex affects spatial range of synchronization and receptive field size without visual experience: a learning model with spiking neurons.
    Saam M; Eckhorn R
    Biol Cybern; 2000 Jul; 83(1):L1-9. PubMed ID: 10933233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haphazard wiring of simple receptive fields and orientation columns in visual cortex.
    Ringach DL
    J Neurophysiol; 2004 Jul; 92(1):468-76. PubMed ID: 14999045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex.
    Sirosh J; Miikkulainen R
    Neural Comput; 1997 Apr; 9(3):577-94. PubMed ID: 9097475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity.
    Yu HH; Verma R; Yang Y; Tibballs HA; Lui LL; Reser DH; Rosa MG
    Eur J Neurosci; 2010 Mar; 31(6):1043-62. PubMed ID: 20377618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.
    Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F
    Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraint on the number of synaptic inputs to a visual cortical neuron controls receptive field formation.
    Tanaka S; Miyashita M
    Neural Comput; 2009 Sep; 21(9):2554-80. PubMed ID: 19548800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex receptive fields in primary visual cortex.
    Martinez LM; Alonso JM
    Neuroscientist; 2003 Oct; 9(5):317-31. PubMed ID: 14580117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptive fields of disparity-selective neurons in macaque striate cortex.
    Livingstone MS; Tsao DY
    Nat Neurosci; 1999 Sep; 2(9):825-32. PubMed ID: 10461222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A ring model for spatiotemporal properties of simple cells in the visual cortex.
    Hamada T; Yamashima M; Kato K
    Biol Cybern; 1997 Oct; 77(4):225-33. PubMed ID: 9394440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of orientation columns via competition between ON- and OFF-center inputs.
    Miller KD
    Neuroreport; 1992 Jan; 3(1):73-6. PubMed ID: 1611038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal spatial organization of receptive fields of complex cells in the early visual cortex.
    Sasaki KS; Ohzawa I
    J Neurophysiol; 2007 Sep; 98(3):1194-212. PubMed ID: 17652422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.