These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 9433801)

  • 41. Differential expression of micro-heterogeneous LewisX-type glycans in the stem cell compartment of the developing mouse spinal cord.
    Karus M; Hennen E; Safina D; Klausmeyer A; Wiese S; Faissner A
    Neurochem Res; 2013 Jun; 38(6):1285-94. PubMed ID: 23624942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Migratory patterns of clonally related cells in the developing central nervous system.
    Gray GE; Leber SM; Sanes JR
    Experientia; 1990 Sep; 46(9):929-40. PubMed ID: 2209802
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell attachment to frozen sections of injured adult mouse brain: effects of tenascin antibody and lectin perturbation of wound-related extracellular matrix molecules.
    Laywell ED; Friedman P; Harrington K; Robertson JT; Steindler DA
    J Neurosci Methods; 1996 Jun; 66(2):99-108. PubMed ID: 8835793
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Positional specificity of corneal nerves during development.
    Bee JA; Hay RA; Lamb EM; Devore JJ; Conrad GW
    Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):38-43. PubMed ID: 3941036
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A monoclonal antibody that recognizes somatic motor neurons in the mature rat nervous system.
    Urakami H; Chiu AY
    J Neurosci; 1990 Feb; 10(2):620-30. PubMed ID: 2303864
    [TBL] [Abstract][Full Text] [Related]  

  • 46. IGF-I supports the survival and/or differentiation of multiple types of central nervous system neurons.
    Bozyczko-Coyne D; Glicksman MA; Prantner JE; McKenna B; Connors T; Friedman C; Dasgupta M; Neff NT
    Ann N Y Acad Sci; 1993 Aug; 692():311-3. PubMed ID: 8215039
    [No Abstract]   [Full Text] [Related]  

  • 47. The two faces of perineuronal nets.
    Viggiano D
    Neuroreport; 2000 Jul; 11(10):2087-90. PubMed ID: 10923649
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular features of cell adhesion molecules involved in neural development.
    Brackenbury R; Sorkin BC; Cunningham BA
    Res Publ Assoc Res Nerv Ment Dis; 1987; 65():155-67. PubMed ID: 2455311
    [No Abstract]   [Full Text] [Related]  

  • 49. Early variations of the disialoganglioside GD3 in chicken embryonic brain support its role in cell migration.
    Lehmann F; Wegerhoff R; Rosenberg A; Schauer R; Kohla G
    Biochimie; 2003; 85(3-4):449-54. PubMed ID: 12770783
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of extracellular matrix in spinal cord development.
    Wiese S; Faissner A
    Exp Neurol; 2015 Dec; 274(Pt B):90-9. PubMed ID: 26028310
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Immunohistochemical evidence for the distribution of nerve growth factor in the embryonic mouse.
    Finn PJ; Ferguson IA; Wilson PA; Vahaviolos J; Rush RA
    J Neurocytol; 1987 Oct; 16(5):639-47. PubMed ID: 3320277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell attachment to and neurite outgrowth on tissue sections of developing, mature and lesioned brain: the role of inhibitory factor(s) in the CNS white matter.
    Watanabe E; Murakami F
    Neurosci Res; 1990 Jun; 8(2):83-99. PubMed ID: 1699177
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ontogenetic development of the dura mater encephali et spinalis of the laboratory mouse Mus musculus v. alba.
    Zajícová A
    Folia Morphol (Praha); 1987; 35(1):46-52. PubMed ID: 3583143
    [No Abstract]   [Full Text] [Related]  

  • 54. Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains.
    Rothbard JB; Brackenbury R; Cunningham BA; Edelman GM
    J Biol Chem; 1982 Sep; 257(18):11064-9. PubMed ID: 6809766
    [No Abstract]   [Full Text] [Related]  

  • 55. Localization and quantitation of hexabrachion (tenascin) in skin, embryonic brain, tumors, and plasma.
    Lightner VA; Slemp CA; Erickson HP
    Ann N Y Acad Sci; 1990; 580():260-75. PubMed ID: 1692456
    [No Abstract]   [Full Text] [Related]  

  • 56. The yin and yang of tenascin-R in CNS development and pathology.
    Pesheva P; Probstmeier R
    Prog Neurobiol; 2000 Aug; 61(5):465-93. PubMed ID: 10748320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Matricellular proteins in immunometabolism and tissue homeostasis.
    Eun K; Kim AY; Ryu S
    BMB Rep; 2024 Sep; 57(9):400-416. PubMed ID: 38919018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Loss of Tenascin-X expression during tumor progression: A new pan-cancer marker.
    Liot S; Aubert A; Hervieu V; Kholti NE; Schalkwijk J; Verrier B; Valcourt U; Lambert E
    Matrix Biol Plus; 2020 May; 6-7():100021. PubMed ID: 33543019
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transcriptional regulation of tenascin genes.
    Chiovaro F; Chiquet-Ehrismann R; Chiquet M
    Cell Adh Migr; 2015; 9(1-2):34-47. PubMed ID: 25793574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The distribution of tenascin-R in the developing avian nervous system.
    Derr LB; McKae LA; Tucker RP
    J Exp Zool; 1998 Feb; 280(2):152-64. PubMed ID: 9433801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.