BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9434103)

  • 1. Na+-dependent glucose uptake and collagen synthesis by cultured bovine retinal pericytes.
    Wakisaka M; Yoshinari M; Yamamoto M; Nakamura S; Asano T; Himeno T; Ichikawa K; Doi Y; Fujishima M
    Biochim Biophys Acta; 1997 Nov; 1362(1):87-96. PubMed ID: 9434103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normalization of glucose entry under the high glucose condition by phlorizin attenuates the high glucose-induced morphological and functional changes of cultured bovine retinal pericytes.
    Wakisaka M; Yoshinari M; Asano T; Iino K; Nakamura S; Takata Y; Fujishima M
    Biochim Biophys Acta; 1999 Jan; 1453(1):83-91. PubMed ID: 9989248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-coupled glucose transporter as a functional glucose sensor of retinal microvascular circulation.
    Wakisaka M; Kitazono T; Kato M; Nakamura U; Yoshioka M; Uchizono Y; Yoshinari M
    Circ Res; 2001 Jun; 88(11):1183-8. PubMed ID: 11397785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of sodium-dependent glucose uptake by captopril improves high-glucose-induced morphological and functional changes of cultured bovine retinal pericytes.
    Wakisaka M; Yoshinari M; Nakamura S; Asano T; Sonoki K; Shi Ah; Iwase M; Takata Y; Fujishima M
    Microvasc Res; 1999 Nov; 58(3):215-23. PubMed ID: 10527765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+-dependent and phlorizin-inhibitable transport of glucose and cycasin in brain endothelial cells.
    Matsuoka T; Nishizaki T; Kisby GE
    J Neurochem; 1998 Feb; 70(2):772-7. PubMed ID: 9453573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells.
    Mandarino LJ; Finlayson J; Hassell JR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):964-72. PubMed ID: 8125759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of glucose transport by bovine retinal capillary pericytes in culture.
    Li W; Chan LS; Khatami M; Rockey JH
    Exp Eye Res; 1985 Aug; 41(2):191-9. PubMed ID: 3905422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-competitive inhibition of myo-inositol transport in cultured bovine retinal capillary pericytes by glucose and reversal by Sorbinil.
    Li W; Chan LS; Khatami M; Rockey JH
    Biochim Biophys Acta; 1986 May; 857(2):198-208. PubMed ID: 3085711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexose transport in microvascular endothelial cells cultured from bovine retina.
    Betz AL; Bowman PD; Goldstein GW
    Exp Eye Res; 1983 Feb; 36(2):269-77. PubMed ID: 6337860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of ascorbate transport by cultured retinal capillary pericytes. Inhibition by glucose.
    Khatami M; Li WY; Rockey JH
    Invest Ophthalmol Vis Sci; 1986 Nov; 27(11):1665-71. PubMed ID: 3771147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin.
    Takakura Y; Kuentzel SL; Raub TJ; Davies A; Baldwin SA; Borchardt RT
    Biochim Biophys Acta; 1991 Nov; 1070(1):1-10. PubMed ID: 1751515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of Na(+)-coupled sugar transport in HT-29 cells: modulation by glucose.
    Blais A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1245-52. PubMed ID: 2058655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Troglitazone reverses the inhibition of nitric oxide production by high glucose in cultured bovine retinal pericytes.
    Kim J; Oh YS; Shinn SH
    Exp Eye Res; 2005 Jul; 81(1):65-70. PubMed ID: 15978256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of retinal capillary pericyte protein and collagen synthesis in culture by high-glucose concentration.
    Li W; Shen S; Khatami M; Rockey JH
    Diabetes; 1984 Aug; 33(8):785-9. PubMed ID: 6745504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugar uptake into brush border vesicles from dog kidney. II. Kinetics.
    Turner RJ; Silverman M
    Biochim Biophys Acta; 1978 Aug; 511(3):470-86. PubMed ID: 687625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-associated proteoglycans of retinal pericytes and endothelial cells: modulation by glucose and ascorbic acid.
    Fisher EJ; McLennan SV; Yue DK; Turtle JR
    Microvasc Res; 1994 Sep; 48(2):179-89. PubMed ID: 7854204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential glucose uptake in retina- and brain-derived endothelial cells.
    Rajah TT; Olson AL; Grammas P
    Microvasc Res; 2001 Nov; 62(3):236-42. PubMed ID: 11678626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy.
    Cui Y; Xu X; Bi H; Zhu Q; Wu J; Xia X; Qiushi Ren ; Ho PC
    Exp Eye Res; 2006 Oct; 83(4):807-16. PubMed ID: 16750827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of rat heart endothelial cells and pericytes: evaluation of their role in the formation of extracellular matrix components.
    He Q; Spiro MJ
    J Mol Cell Cardiol; 1995 May; 27(5):1173-83. PubMed ID: 7473775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.