These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9434120)

  • 1. A spectroscopic study of glycated bovine alpha-crystallin: investigation of flexibility of the C-terminal extension, chaperone activity and evidence for diglycation.
    Blakytny R; Carver JA; Harding JJ; Kilby GW; Sheil MM
    Biochim Biophys Acta; 1997 Dec; 1343(2):299-315. PubMed ID: 9434120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin.
    Treweek TM; Rekas A; Walker MJ; Carver JA
    Exp Eye Res; 2010 Nov; 91(5):691-9. PubMed ID: 20732317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-terminal lysine truncation increases thermostability and enhances chaperone-like function of porcine alphaB-crystallin.
    Liao JH; Lee JS; Chiou SH
    Biochem Biophys Res Commun; 2002 Sep; 297(2):309-16. PubMed ID: 12237119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins.
    Carver JA; Lindner RA
    Int J Biol Macromol; 1998; 22(3-4):197-209. PubMed ID: 9650074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the C-terminal extensions of alpha-crystallins. Swapping the C-terminal extension of alpha-crystallin to alphaB-crystallin results in enhanced chaperone activity.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    J Biol Chem; 2002 Nov; 277(48):45821-8. PubMed ID: 12235146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of modification sites in glycated crystallin in vitro and in vivo.
    Kielmas M; Kijewska M; Kluczyk A; Oficjalska J; Gołębiewska B; Stefanowicz P; Szewczuk Z
    Anal Bioanal Chem; 2015 Mar; 407(9):2557-67. PubMed ID: 25636230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural alterations of alpha-crystallin during its chaperone action.
    Lindner RA; Kapur A; Mariani M; Titmuss SJ; Carver JA
    Eur J Biochem; 1998 Nov; 258(1):170-83. PubMed ID: 9851707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution conformation of bovine lens alpha- and betaB2-crystallin terminal extensions.
    Le Breton ER; Carver JA
    Int J Pept Protein Res; 1996; 47(1-2):9-19. PubMed ID: 8907494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of the C-terminal extension of bovine alphaA-crystallin reduces chaperone-like activity.
    Smulders RHPH ; Carver JA; Lindner RA; van Boekel MA; Bloemendal H; de Jong WW
    J Biol Chem; 1996 Nov; 271(46):29060-6. PubMed ID: 8910559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-crystallin as a molecular chaperone.
    Derham BK; Harding JJ
    Prog Retin Eye Res; 1999 Jul; 18(4):463-509. PubMed ID: 10217480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of glycine 1 and lysine 2 in the glycation of bovine gamma B-crystallin. Site-directed mutagenesis of lysine to threonine.
    Casey EB; Zhao HR; Abraham EC
    J Biol Chem; 1995 Sep; 270(35):20781-6. PubMed ID: 7657661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 1H NMR spectroscopic comparison of gamma S- and gamma B-crystallins.
    Cooper PG; Carver JA; Aquilina JA; Ralston GB; Truscott RJ
    Exp Eye Res; 1994 Aug; 59(2):211-20. PubMed ID: 7835410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutations within the core "alpha-crystallin" domain of the small heat-shock protein, human alphaB-crystallin, decrease molecular chaperone functions.
    Muchowski PJ; Wu GJ; Liang JJ; Adman ET; Clark JI
    J Mol Biol; 1999 Jun; 289(2):397-411. PubMed ID: 10366513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the structure and interactions of crystallin proteins by NMR spectroscopy.
    Carver JA
    Prog Retin Eye Res; 1999 Jul; 18(4):431-62. PubMed ID: 10217479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo modification of the C-terminal lysine of human lens alphaB-crystallin.
    Lin P; Smith DL; Smith JB
    Exp Eye Res; 1997 Nov; 65(5):673-80. PubMed ID: 9367647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent chaperone activity and structural properties of human alphaA- and alphaB-crystallins.
    Reddy GB; Das KP; Petrash JM; Surewicz WK
    J Biol Chem; 2000 Feb; 275(7):4565-70. PubMed ID: 10671481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry.
    Peterson JJ; Young MM; Takemoto LJ
    Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical modulation of the chaperone function of human alphaA-crystallin.
    Biswas A; Lewis S; Wang B; Miyagi M; Santoshkumar P; Gangadhariah MH; Nagaraj RH
    J Biochem; 2008 Jul; 144(1):21-32. PubMed ID: 18344542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the specifically targeted lysine residues in the glycation dependent loss of chaperone activity of alpha A- and alpha B-crystallins.
    Abraham EC; Huaqian J; Aziz A; Kumarasamy A; Datta P
    Mol Cell Biochem; 2008 Mar; 310(1-2):235-9. PubMed ID: 18158587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.