These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9434636)

  • 1. cAMP and Ca2+ involvement in the mitochondrial response of cultured fetal rat hepatocytes to adrenaline.
    García MV; Hernández-Berciano R; López-Mediavilla C; Orfao A; Medina JM
    Exp Cell Res; 1997 Dec; 237(2):403-9. PubMed ID: 9434636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maturation and secretion of rat hepatic lipase is inhibited by alpha1B-adrenergic stimulation through changes in Ca2+ homoeostasis: thapsigargin and EGTA both mimic the effect of adrenaline.
    Neve BP; Verhoeven AJ; Kalkman I; Jansen H
    Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):701-6. PubMed ID: 9480878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between adrenaline and epidermal growth factor in the control of liver glycogenolysis in mouse.
    Grau M; Soley M; Ramírez I
    Endocrinology; 1997 Jun; 138(6):2601-9. PubMed ID: 9165054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of adrenaline and glucocorticoids on monocyte cAMP-specific phosphodiesterase (PDE4) in a monocytic cell line.
    Delgado M; Fernández-Alfonso MS; Fuentes A
    Arch Dermatol Res; 2002 Jul; 294(4):190-7. PubMed ID: 12111350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Adrenaline activates oxidative phosphorylation of rat liver mitochondria through alpha 1-receptors].
    Breton L; Clot JP; Bouriannes J; Baudry M
    C R Seances Soc Biol Fil; 1987; 181(3):242-8. PubMed ID: 2888518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prostaglandin E2 stimulates the formation of mineralized bone nodules by a cAMP-independent mechanism in the culture of adult rat calvarial osteoblasts.
    Kaneki H; Takasugi I; Fujieda M; Kiriu M; Mizuochi S; Ide H
    J Cell Biochem; 1999 Apr; 73(1):36-48. PubMed ID: 10088722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Nitrosofenfluramine induces cytotoxicity via mitochondrial dysfunction and oxidative stress in isolated rat hepatocytes.
    Nakagawa Y; Suzuki T; Kamimura H; Nagai F
    Arch Toxicol; 2005 Jun; 79(6):312-20. PubMed ID: 15696257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorpropham induces mitochondrial dysfunction in rat hepatocytes.
    Nakagawa Y; Nakajima K; Suzuki T
    Toxicology; 2004 Aug; 200(2-3):123-33. PubMed ID: 15212809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormone-initiated maturation of rat liver mitochondria after birth.
    Sutton R; Pollak JK
    Biochem J; 1980 Jan; 186(1):361-7. PubMed ID: 6245641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of aflatoxin B in vitro on rat liver mitochondrial respiratory functions.
    Sajan MP; Satav JG; Bhattacharya RK
    Indian J Exp Biol; 1997 Nov; 35(11):1187-90. PubMed ID: 9567747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of adrenaline and Walker-256 tumour-induced cachexia upon Kupffer cell metabolism.
    Seelaender MC; Kazantzis M; Costa Rosa LF
    Cell Biochem Funct; 1999 Sep; 17(3):151-6. PubMed ID: 10451535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regucalcin increases Ca2+-ATPase activity in the heart mitochondria of normal and regucalcin transgenic rats.
    Akhter T; Sawada N; Yamaguchi M
    Int J Mol Med; 2006 Jul; 18(1):171-6. PubMed ID: 16786169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: a proposed direct participation of respiratory complexes I and III.
    Belyaeva EA; Glazunov VV; Korotkov SM
    Chem Biol Interact; 2004 Dec; 150(3):253-70. PubMed ID: 15560892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation by thyroid status of cyclic AMP-dependent and Ca2+-dependent mechanisms of hormone action in rat liver cells. Possible involvement of two different transduction mechanisms in alpha 1-adrenergic action.
    Corvera S; Hernandez-Sotomayor SM; Garcia-Sainz JA
    Biochim Biophys Acta; 1984 Feb; 803(1-2):95-105. PubMed ID: 6320911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular lithium and cyclic AMP levels are mutually regulated in neuronal cells.
    Montezinho LP; B Duarte C; Fonseca CP; Glinka Y; Layden B; Mota de Freitas D; Geraldes CF; Castro MM
    J Neurochem; 2004 Aug; 90(4):920-30. PubMed ID: 15287898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of adrenaline on glucose and glutamine metabolism and superoxide production by rat neutrophils.
    Garcia C; Pithon-Curi TC; de Lourdes Firmano M; Pires de Melo M; Newsholme P; Curi R
    Clin Sci (Lond); 1999 Jun; 96(6):549-55. PubMed ID: 10334960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of adrenaline on the release of cyclic AMP by the rat diaphragm.
    Edén S; Rosberg S; Isaksson O; Kostyo JL
    Acta Physiol Scand; 1976 Sep; 98(1):24-9. PubMed ID: 184685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative contribution of Ca2+-dependent mechanism in glucagon-induced glucose output from the liver.
    Yamatani K; Saito K; Ikezawa Y; Ohnuma H; Sugiyama K; Manaka H; Takahashi K; Sasaki H
    Arch Biochem Biophys; 1998 Jul; 355(2):175-80. PubMed ID: 9675024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.