BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9434742)

  • 1. Nutritional regulation of the glucose-6-phosphate dehydrogenase gene is mediated by a nuclear posttranscriptional mechanism.
    Hodge DL; Salati LM
    Arch Biochem Biophys; 1997 Dec; 348(2):303-12. PubMed ID: 9434742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posttranscriptional regulation of glucose-6-phosphate dehydrogenase by dietary polyunsaturated fat.
    Stabile LP; Hodge DL; Klautky SA; Salati LM
    Arch Biochem Biophys; 1996 Aug; 332(2):269-79. PubMed ID: 8806735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyunsaturated fatty acids inhibit the expression of the glucose-6-phosphate dehydrogenase gene in primary rat hepatocytes by a nuclear posttranscriptional mechanism.
    Stabile LP; Klautky SA; Minor SM; Salati LM
    J Lipid Res; 1998 Oct; 39(10):1951-63. PubMed ID: 9788241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of hnRNPs K, L and A2/B1 as candidate proteins involved in the nutritional regulation of mRNA splicing.
    Griffith BN; Walsh CM; Szeszel-Fedorowicz W; Timperman AT; Salati LM
    Biochim Biophys Acta; 2006; 1759(11-12):552-61. PubMed ID: 17095106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of the splicing of glucose-6-phosphate dehydrogenase precursor mRNA by polyunsaturated fatty acids.
    Tao H; Szeszel-Fedorowicz W; Amir-Ahmady B; Gibson MA; Stabile LP; Salati LM
    J Biol Chem; 2002 Aug; 277(34):31270-8. PubMed ID: 12072438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the processing of glucose-6-phosphate dehydrogenase mRNA by nutritional status.
    Amir-Ahmady B; Salati LM
    J Biol Chem; 2001 Mar; 276(13):10514-23. PubMed ID: 11124967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary regulation of expression of glucose-6-phosphate dehydrogenase.
    Salati LM; Amir-Ahmady B
    Annu Rev Nutr; 2001; 21():121-40. PubMed ID: 11375432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization and tissue-specific expression of the mouse glucose-6-phosphate dehydrogenase gene.
    Hodge DL; Charron T; Stabile LP; Klautky SA; Salati LM
    DNA Cell Biol; 1998 Mar; 17(3):283-91. PubMed ID: 9539108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glucose-6 phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the meal-fed rat.
    Mack DO; Watson JJ; Johnson BC
    J Nutr; 1975 Jun; 105(6):714-7. PubMed ID: 1170287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repression of pentose phosphate pathway dehydrogenase synthesis and mRNA by dietary fat in rats.
    Tomlinson JE; Nakayama R; Holten D
    J Nutr; 1988 Mar; 118(3):408-15. PubMed ID: 3351636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in nutritional status regulate acetyl-CoA carboxylase expression in avian liver by a transcriptional mechanism.
    Hillgartner FB; Charron T; Chesnut KA
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):263-8. PubMed ID: 8870677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary fatty acids on the control of glucose-6-phosphate dehydrogenase and malic enzyme in the starved-refed rat.
    Nace CS; Szepesi B
    J Nutr; 1976 Feb; 106(2):285-91. PubMed ID: 129545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of hepatic insulin-like growth factor I (IGF-I) messenger ribonucleic acid (mRNA) during fasting is associated with diminished splicing of IGF-I pre-mRNA and decreased stability of cytoplasmic IGF-I mRNA.
    Zhang J; Chrysis D; Underwood LE
    Endocrinology; 1998 Nov; 139(11):4523-30. PubMed ID: 9794461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin increases the processing efficiency of messenger ribonucleic acid-S14 nuclear precursor.
    Walker JD; Burmeister LA; Mariash A; Bosman JF; Harmon J; Mariash CN
    Endocrinology; 1996 Jun; 137(6):2293-9. PubMed ID: 8641178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A carbohydrate-rich diet stimulates glucose-6-phosphate dehydrogenase expression in rat hepatic sinusoidal endothelial cells.
    Spolarics Z
    J Nutr; 1999 Jan; 129(1):105-8. PubMed ID: 9915883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dietary fat and sucrose on the activities of several rat hepatic enzymes and their diurnal response to a meal.
    Mack DO; Watson JJ; Johnson BC
    J Nutr; 1975 Jun; 105(6):701-13. PubMed ID: 167137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of hepatic gene expression by starvation versus refeeding following a high-sucrose or high-fat diet.
    Ryu MH; Sohn HS; Heo YR; Moustaid-Moussa N; Cha YS
    Nutrition; 2005 Apr; 21(4):543-52. PubMed ID: 15811778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nutrients and insulin on transcriptional and post-transcriptional regulation of glucose-6-phosphate dehydrogenase synthesis in rat liver.
    Katsurada A; Iritani N; Fukuda H; Matsumura Y; Noguchi T; Tanaka T
    Biochim Biophys Acta; 1989 Nov; 1006(1):104-10. PubMed ID: 2679879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pair-feeding in the dietary control of glucose-6-phosphate dehydrogenase.
    Gimenez MS; Johnson BC
    J Nutr; 1981 Feb; 111(2):260-5. PubMed ID: 7463169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis.
    Hong X; Song R; Song H; Zheng T; Wang J; Liang Y; Qi S; Lu Z; Song X; Jiang H; Liu L; Zhang Z
    Gut; 2014 Oct; 63(10):1635-47. PubMed ID: 24352616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.