These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 9434751)
1. Probing the mechanism of inosine monophosphate dehydrogenase with kinetic isotope effects and NMR determination of the hydride transfer stereospecificity. Xiang B; Markham GD Arch Biochem Biophys; 1997 Dec; 348(2):378-82. PubMed ID: 9434751 [TBL] [Abstract][Full Text] [Related]
2. Kinetic mechanism of human inosine 5'-monophosphate dehydrogenase type II: random addition of substrates and ordered release of products. Wang W; Hedstrom L Biochemistry; 1997 Jul; 36(28):8479-83. PubMed ID: 9214292 [TBL] [Abstract][Full Text] [Related]
4. Monovalent cation activation in Escherichia coli inosine 5'-monophosphate dehydrogenase. Kerr KM; Cahoon M; Bosco DA; Hedstrom L Arch Biochem Biophys; 2000 Mar; 375(1):131-7. PubMed ID: 10683258 [TBL] [Abstract][Full Text] [Related]
5. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase. Markham GD; Bock CL; Schalk-Hihi C Biochemistry; 1999 Apr; 38(14):4433-40. PubMed ID: 10194364 [TBL] [Abstract][Full Text] [Related]
6. The conformation of NADH bound to inosine 5'-monophosphate dehydrogenase determined by transferred nuclear Overhauser effect spectroscopy. Schalk-Hihi C; Zhang YZ; Markham GD Biochemistry; 1998 May; 37(20):7608-16. PubMed ID: 9585576 [TBL] [Abstract][Full Text] [Related]
7. Kinetic isotope effects as probes of the mechanism of galactose oxidase. Whittaker MM; Ballou DP; Whittaker JW Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494 [TBL] [Abstract][Full Text] [Related]
8. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960 [TBL] [Abstract][Full Text] [Related]
9. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens. Slatner M; Nidetzky B; Kulbe KD Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145 [TBL] [Abstract][Full Text] [Related]
10. Hydride reduction of NAD+ analogues by isopropyl alcohol: kinetics, deuterium isotope effects and mechanism. Lu Y; Qu F; Moore B; Endicott D; Kuester W J Org Chem; 2008 Jul; 73(13):4763-70. PubMed ID: 18543993 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism. Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893 [TBL] [Abstract][Full Text] [Related]
12. Monovalent cation activation and kinetic mechanism of inosine 5'-monophosphate dehydrogenase. Xiang B; Taylor JC; Markham GD J Biol Chem; 1996 Jan; 271(3):1435-40. PubMed ID: 8576135 [TBL] [Abstract][Full Text] [Related]
13. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related]
14. Effects of pressure on deuterium isotope effects of yeast alcohol dehydrogenase using alternative substrates. Park H; Kidman G; Northrop DB Arch Biochem Biophys; 2005 Jan; 433(1):335-40. PubMed ID: 15581588 [TBL] [Abstract][Full Text] [Related]
15. Control of ionizable residues in the catalytic mechanism of tryptophan synthase from Salmonella typhimurium. Raboni S; Mozzarelli A; Cook PF Biochemistry; 2007 Nov; 46(45):13223-34. PubMed ID: 17927213 [TBL] [Abstract][Full Text] [Related]
16. Asp338 controls hydride transfer in Escherichia coli IMP dehydrogenase. Kerr KM; Digits JA; Kuperwasser N; Hedstrom L Biochemistry; 2000 Aug; 39(32):9804-10. PubMed ID: 10933797 [TBL] [Abstract][Full Text] [Related]
17. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase. Zheng R; Blanchard JS Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879 [TBL] [Abstract][Full Text] [Related]
18. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
19. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase. Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966 [TBL] [Abstract][Full Text] [Related]
20. Kinetic mechanism of human hypoxanthine-guanine phosphoribosyltransferase: rapid phosphoribosyl transfer chemistry. Xu Y; Eads J; Sacchettini JC; Grubmeyer C Biochemistry; 1997 Mar; 36(12):3700-12. PubMed ID: 9132023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]