These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9434874)

  • 21. Modulated gap junctional intercellular communication as a biomarker of PAH epigenetic toxicity: structure-function relationship.
    Upham BL; Weis LM; Trosko JE
    Environ Health Perspect; 1998 Aug; 106 Suppl 4(Suppl 4):975-81. PubMed ID: 9703481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of tumor promotion: potential role of intercellular communication.
    Trosko JE; Chang CC; Medcalf A
    Cancer Invest; 1983; 1(6):511-26. PubMed ID: 6365277
    [No Abstract]   [Full Text] [Related]  

  • 23. Exploring the relationship between the inhibition of gap junctional intercellular communication and other biological phenomena.
    Rosenkranz HS; Pollack N; Cunningham AR
    Carcinogenesis; 2000 May; 21(5):1007-11. PubMed ID: 10783325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of 'genotoxic' and 'non-genotoxic' alerts for cancer in mice: the carcinogenic potency database.
    Cunningham AR; Rosenkranz HS; Zhang YP; Klopman G
    Mutat Res; 1998 Feb; 398(1-2):1-17. PubMed ID: 9626960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The pH 6.7 Syrian hamster embryo cell transformation assay for assessing the carcinogenic potential of chemicals.
    LeBoeuf RA; Kerckaert GA; Aardema MJ; Gibson DP; Brauninger R; Isfort RJ
    Mutat Res; 1996 Sep; 356(1):85-127. PubMed ID: 8841476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transformation assay in Bhas 42 cells: a model using initiated cells to study mechanisms of carcinogenesis and predict carcinogenic potential of chemicals.
    Sasaki K; Umeda M; Sakai A; Yamazaki S; Tanaka N
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2015; 33(1):1-35. PubMed ID: 25803194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of some carcinogenic and non-carcinogenic polycyclic aromatic hydrocarbons on gap junction intercellular communication in hepatoma cell cultures.
    Sharovskaya J; Kobliakova I; Solomatina N; Kobliakov V
    Eur J Cell Biol; 2006 May; 85(5):387-97. PubMed ID: 16412531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated approach to testing and assessment for predicting rodent genotoxic carcinogenicity.
    Petkov PI; Schultz TW; Donner EM; Honma M; Morita T; Hamada S; Wakata A; Mishima M; Maniwa J; Todorov M; Kaloyanova E; Kotov S; Mekenyan OG
    J Appl Toxicol; 2016 Dec; 36(12):1536-1550. PubMed ID: 27225589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heritable and cancer risks of exposures to anticancer drugs: inter-species comparisons of covalent deoxyribonucleic acid-binding agents.
    Vogel EW; Barbin A; Nivard MJ; Stack HF; Waters MD; Lohman PH
    Mutat Res; 1998 May; 400(1-2):509-40. PubMed ID: 9685708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of cell-cell communication by tumor promoters.
    Trosko JE; Yotti LP; Warren ST; Tsushimoto G; Chang C
    Carcinog Compr Surv; 1982; 7():565-85. PubMed ID: 7039834
    [No Abstract]   [Full Text] [Related]  

  • 31. Liver carcinogenesis: the role for some chemicals of an epigenetic mechanism of liver-tumour promotion involving modification of the cell membrane.
    Williams GM
    Food Cosmet Toxicol; 1981 Oct; 19(5):577-83. PubMed ID: 7308903
    [No Abstract]   [Full Text] [Related]  

  • 32. Changes of gap junctional intercellular communication during multistage carcinogenesis.
    Yamasaki H
    Prog Clin Biol Res; 1990; 340D():153-64. PubMed ID: 2196577
    [No Abstract]   [Full Text] [Related]  

  • 33. Chemical structure determines target organ carcinogenesis in rats.
    Carrasquer CA; Malik N; States G; Qamar S; Cunningham SL; Cunningham AR
    SAR QSAR Environ Res; 2012 Oct; 23(7-8):775-95. PubMed ID: 23066888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical carcinogen mechanisms of action and implications for testing methodology.
    Williams GM; Iatropoulos MJ; Weisburger JH
    Exp Toxicol Pathol; 1996 Feb; 48(2-3):101-11. PubMed ID: 8672863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Dependence of the carcinogenicity of nitro compounds on their structural characteristics].
    Abilev SK; Tarasov VA; Tarasov AV; Mustafaev ON; Mel'nik VA
    Genetika; 2006 May; 42(5):611-9. PubMed ID: 16808241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Promotion and progression in carcinogenesis.
    Burns FJ
    Prog Clin Biol Res; 1990; 340D():65-80. PubMed ID: 2196585
    [No Abstract]   [Full Text] [Related]  

  • 37. Cell-cell interaction and carcinogenesis.
    Yamasaki H
    Toxicol Pathol; 1986; 14(3):363-9. PubMed ID: 3538348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The syrian hamster embryo (SHE) cell transformation assay: review of the methods and results.
    Mauthe RJ; Gibson DP; Bunch RT; Custer L
    Toxicol Pathol; 2001; 29 Suppl():138-46. PubMed ID: 11695550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of structural features and associated mechanisms of action for carcinogens in rats.
    Cunningham AR; Klopman G; Rosenkranz HS
    Mutat Res; 1998 Aug; 405(1):9-27. PubMed ID: 9729240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liver carcinogenesis is not a predicted outcome of chemically induced hepatocyte proliferation.
    Melnick RL; Huff J
    Toxicol Ind Health; 1993; 9(3):415-38. PubMed ID: 8367884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.