These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 9434968)
1. Determination of 3D positions of pacemaker leads from biplane angiographic sequences. Hoffmann KR; Williams BB; Esthappan J; Chen SY; Carroll JD; Harauchi H; Doerr V; Kay GN; Eberhardt A; Overland M Med Phys; 1997 Dec; 24(12):1854-62. PubMed ID: 9434968 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of imaging geometries calculated from biplane images. Esthappan J; Harauchi H; Hoffmann KR Med Phys; 1998 Jun; 25(6):965-75. PubMed ID: 9650187 [TBL] [Abstract][Full Text] [Related]
3. Improved determination of biplane imaging geometry from two projection images and its application to three-dimensional reconstruction of coronary arterial trees. Chen SY; Metz CE Med Phys; 1997 May; 24(5):633-54. PubMed ID: 9167155 [TBL] [Abstract][Full Text] [Related]
4. Optimization of three-dimensional angiographic data obtained by self-calibration of multiview imaging. Noël PB; Hoffmann KR; Kasodekar S; Walczak AM; Schafer S Med Phys; 2006 Oct; 33(10):3901-11. PubMed ID: 17089852 [TBL] [Abstract][Full Text] [Related]
5. Determination of 3D imaging geometry and object configurations from two biplane views: an enhancement of the Metz-Fencil technique. Hoffmann KR; Metz CE; Chen Y Med Phys; 1995 Aug; 22(8):1219-27. PubMed ID: 7476707 [TBL] [Abstract][Full Text] [Related]
6. Effects of point configuration on the accuracy in 3D reconstruction from biplane images. Dmochowski J; Hoffmann KR; Singh V; Xu J; Nazareth DP Med Phys; 2005 Sep; 32(9):2862-9. PubMed ID: 16266100 [TBL] [Abstract][Full Text] [Related]
7. A system for determination of 3D vessel tree centerlines from biplane images. Hoffmann KR; Sen A; Lan L; Chua KG; Esthappan J; Mazzucco M Int J Card Imaging; 2000 Oct; 16(5):315-30. PubMed ID: 11215917 [TBL] [Abstract][Full Text] [Related]
8. In vivo stress analysis of a pacing lead from an angiographic sequence. Liu L; Wang J; Yang W; Chen SJ J Biomech Eng; 2011 Apr; 133(4):041004. PubMed ID: 21428678 [TBL] [Abstract][Full Text] [Related]
9. Towards a theory of a solution space for the biplane imaging geometry problem. Singh V; Xu J; Hoffmann KR; Xu G; Chen Z; Gopal A Med Phys; 2006 Oct; 33(10):3647-65. PubMed ID: 17089831 [TBL] [Abstract][Full Text] [Related]
10. Determination of three-dimensional positions of known sparse objects from a single projection. Hoffmann KR; Esthappan J Med Phys; 1997 Apr; 24(4):555-64. PubMed ID: 9127308 [TBL] [Abstract][Full Text] [Related]
11. In vivo 3D modeling of the femoropopliteal artery in human subjects based on x-ray angiography: methodology and validation. Klein AJ; Casserly IP; Messenger JC; Carroll JD; Chen SY Med Phys; 2009 Feb; 36(2):289-310. PubMed ID: 19291969 [TBL] [Abstract][Full Text] [Related]
12. Angle-independent measure of motion for image-based gating in 3D coronary angiography. Lehmann GC; Holdsworth DW; Drangova M Med Phys; 2006 May; 33(5):1311-20. PubMed ID: 16752566 [TBL] [Abstract][Full Text] [Related]
13. Measurement of left atrial volume from transthoracic three-dimensional echocardiographic datasets using the biplane Simpson's technique. Iwataki M; Takeuchi M; Otani K; Kuwaki H; Haruki N; Yoshitani H; Tamura M; Abe H; Otsuji Y J Am Soc Echocardiogr; 2012 Dec; 25(12):1319-26. PubMed ID: 22998854 [TBL] [Abstract][Full Text] [Related]
14. Propagation and reduction of error in three-dimensional structure determined from biplane views of unknown orientation. Fencil LE; Metz CE Med Phys; 1990; 17(6):951-61. PubMed ID: 2280738 [TBL] [Abstract][Full Text] [Related]
15. Do implanted pacemaker leads and ICD leads cause metal-related artifact in cardiac PET/CT? DiFilippo FP; Brunken RC J Nucl Med; 2005 Mar; 46(3):436-43. PubMed ID: 15750156 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity of CIPS-computed PVC location to measurement errors in ECG electrode position: the need for the 3D camera. van Dam PM; Gordon JP; Laks M J Electrocardiol; 2014; 47(6):788-93. PubMed ID: 25194874 [TBL] [Abstract][Full Text] [Related]
17. Analytical Modeling for Computing Lead Stress in a Novel Epicardial Micropacemaker. Zhou L; Bar-Cohen Y; Peck RA; Chirikian GV; Harwin B; Chmait RH; Pruetz JD; Silka MJ; Loeb GE Cardiovasc Eng Technol; 2017 Mar; 8(1):96-105. PubMed ID: 28070867 [TBL] [Abstract][Full Text] [Related]
18. Scanning-beam digital x-ray (SBDX) technology for interventional and diagnostic cardiac angiography. Speidel MA; Wilfley BP; Star-Lack JM; Heanue JA; Van Lysel MS Med Phys; 2006 Aug; 33(8):2714-27. PubMed ID: 16964847 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional reconstruction of myocardial contrast perfusion from biplane cineangiograms by means of linear programming techniques. Dumay AC; Minderhoud H; Gerbrands JJ; Zijlstra F; Essed CE; Serruys PW; Reiber JH Int J Card Imaging; 1988; 3(2-3):141-52. PubMed ID: 3171240 [TBL] [Abstract][Full Text] [Related]
20. Automatic correction of biplane projection imaging geometry. Close R; Morioka C; Whiting JS Med Phys; 1996 Jan; 23(1):133-9. PubMed ID: 8700024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]